1,728 research outputs found

    Radial Color Gradients in K+A Galaxies in Distant Clusters of Galaxies

    Get PDF
    Galaxies in rich clusters with z ā‰³\gtrsim 0.3 are observed to have a higher fraction of photometrically blue galaxies than their nearby counterparts. This raises the important question of what environmental effects can cause the termination of star formation between z ā‰ˆ\approx 0.3 and the present. The star formation may be truncated due to ram-pressure stripping, or the gas in the disk may be depleted by an episode of star formation caused by some external perturbation. To help resolve this issue, surface photometry was carried out for a total of 70 early-type galaxies in the cluster Cl1358+62, at z āˆ¼\sim 0.33, using two-color images from the Hubble Archive. The galaxies were divided into two categories based on spectroscopic criteria: 24 are type K+A (e.g., strong Balmer lines, with no visible emission lines), while the remaining 46 are in the control sample with normal spectra. Radial color profiles were produced to see if the K+A galaxies show bluer nuclei in relation to their surrounding disks. Specifically, a linear gradient was fit to the radial color profile of each galaxy. We find that the K+A galaxies on average tend to have slightly bluer gradients towards the center than the normals. A Kolmogorov-Smirnov two-sample test has been applied to the two sets of color gradients. The result of the test indicates that there is only a āˆ¼\sim2% probability that the K+A and normal samples are drawn from the same parent distribution. There is a possible complication from a trend in the apparent magnitude vs. color gradient relation, but overall our results favor the centralized star formation scenario as an important process in the evolution of galaxies in dense clusters.Comment: 16 pages, 12 figures, accepted for publication in A

    Evolution of level density step structures from 56,57-Fe to 96,97-Mo

    Full text link
    Level densities have been extracted from primary gamma spectra for 56,57-Fe and 96,97-Mo nuclei using (3-He,alpha gamma) and (3-He,3-He') reactions on 57-Fe and 97-Mo targets. The level density curves reveal step structures above the pairing gap due to the breaking of nucleon Cooper pairs. The location of the step structures in energy and their shapes arise from the interplay between single-particle energies and seniority-conserving and seniority-non-conserving interactions.Comment: 9 pages, including 5 figure

    A vortex description of the first-order phase transition in type-I superconductors

    Full text link
    Using both analytical arguments and detailed numerical evidence we show that the first order transition in the type-I 2D Abelian Higgs model can be understood in terms of the statistical mechanics of vortices, which behave in this regime as an ensemble of attractive particles. The well-known instabilities of such ensembles are shown to be connected to the process of phase nucleation. By characterizing the equation of state for the vortex ensemble we show that the temperature for the onset of a clustering instability is in qualitative agreement with the critical temperature. Below this point the vortex ensemble collapses to a single cluster, which is a non-extensive phase, and disappears in the absence of net topological charge. The vortex description provides a detailed mechanism for the first order transition, which applies at arbitrarily weak type-I and is gauge invariant unlike the usual field-theoretic considerations, which rely on asymptotically large gauge coupling.Comment: 4 pages, 6 figures, uses RevTex. Additional references added, some small corrections to the tex

    Staggered fermions and chiral symmetry breaking in transverse lattice regulated QED

    Full text link
    Staggered fermions are constructed for the transverse lattice regularization scheme. The weak perturbation theory of transverse lattice non-compact QED is developed in light-cone gauge, and we argue that for fixed lattice spacing this theory is ultraviolet finite, order by order in perturbation theory. However, by calculating the anomalous scaling dimension of the link fields, we find that the interaction Hamiltonian becomes non-renormalizable for g2(a)>4Ļ€g^2(a) > 4\pi, where g(a)g(a) is the bare (lattice) QED coupling constant. We conjecture that this is the critical point of the chiral symmetry breaking phase transition in QED. Non-perturbative chiral symmetry breaking is then studied in the strong coupling limit. The discrete remnant of chiral symmetry that remains on the lattice is spontaneously broken, and the ground state to lowest order in the strong coupling expansion corresponds to the classical ground state of the two-dimensional spin one-half Heisenberg antiferromagnet.Comment: 30 pages, UFIFT-HEP-92-1

    Thermoregulation and heterothermy in some of the smaller flying foxes (Megachiroptera) of New Guinea

    Full text link
    Body temperature, heterothermy, oxygen consumption, heart rate, and evaporative water loss were studied in four species of flying foxes (Megachiroptera), Dobsonia minor, Nyctimene major, Nyctimene albiventer , and Paranyctimene raptor , from the vicinity of Madang on the north coast of New Guinea.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47105/1/359_2004_Article_BF00297716.pd

    Phosphorylation of histone H3(T118) alters nucleosome dynamics and remodeling

    Get PDF
    Nucleosomes, the fundamental units of chromatin structure, are regulators and barriers to transcription, replication and repair. Post-translational modifications (PTMs) of the histone proteins within nucleosomes regulate these DNA processes. Histone H3(T118) is a site of phosphorylation [H3(T118ph)] and is implicated in regulation of transcription and DNA repair. We prepared H3(T118ph) by expressed protein ligation and determined its influence on nucleosome dynamics. We find H3(T118ph) reduces DNAā€“histone binding by 2ā€‰kcal/mol, increases nucleosome mobility by 28-fold and increases DNA accessibility near the dyad region by 6-fold. Moreover, H3(T118ph) increases the rate of hMSH2ā€“hMSH6 nucleosome disassembly and enables nucleosome disassembly by the SWI/SNF chromatin remodeler. These studies suggest that H3(T118ph) directly enhances and may reprogram chromatin remodeling reactions

    Masses and Phase Structure in the Ginzburg-Landau Model

    Get PDF
    We study numerically the phase structure of the Ginzburg-Landau model, with particular emphasis on mass measurements. There is no local gauge invariant order parameter, but we find that there is a phase transition characterized by a vanishing photon mass. For type I superconductors the transition is of 1st order. For type II 1st order is excluded by susceptibility analysis, but the photon correlation length suggests 2nd order critical behaviour with \nu ~ 1/2. The scalar mass, in contrast, does not show clear critical behaviour in the type II regime for V \to \infty, contrary to the conventional picture.Comment: 16 pages, 6 figures. More data gathered, allowing more definite conclusion
    • ā€¦
    corecore