185 research outputs found

    Binge Eating Disorder Mediates Links between Symptoms of Depression and Anxiety and Caloric Intake in Obese Women

    Get PDF
    Despite considerable comorbidity between mood disorders, binge eating disorder (BED), and obesity, the underlying mechanisms remain unresolved. Therefore, the purpose of this study was to examine models by which internalizing behaviors of depression and anxiety influence food intake in overweight/obese women. Thirty-two women (15 BED, 17 controls) participated in a laboratory eating-episode and completed questionnaires assessing symptoms of anxiety and depression. Path analysis was used to test mediation and moderation models to determine the mechanisms by which internalizing symptoms influenced kilocalorie (kcal) intake. The BED group endorsed significantly more symptoms of depression (10.1 versus 4.8, P=0.005 ) and anxiety (8.5 versus 2.7, P=0.003). Linear regression indicated that BED diagnosis and internalizing symptoms accounted for 30% of the variance in kcal intake. Results from path analysis suggested that BED mediates the influence of internalizing symptoms on total kcal intake. The associations between internalizing symptoms and food intake are best described as operating indirectly through a BED diagnosis. This suggests that symptoms of depression and anxiety influence whether one engages in binge eating, which influences kcal intake. Greater understanding of the mechanisms underlying the associations between mood, binge eating, and food intake will facilitate the development of more effective prevention and treatment strategies for both BED and obesity

    Grafting of Poly(methyl methacrylate) Brushes from Magnetite Nanoparticles Using a Phosphonic Acid Based Initiator by Ambient Temperature Atom Transfer Radical Polymerization (ATATRP)

    Get PDF
    Poly(methyl methacrylate) in the brush form is grown from the surface of magnetite nanoparticles by ambient temperature atom transfer radical polymerization (ATATRP) using a phosphonic acid based initiator. The surface initiator was prepared by the reaction of ethylene glycol with 2-bromoisobutyrl bromide, followed by the reaction with phosphorus oxychloride and hydrolysis. This initiator is anchored to magnetite nanoparticles via physisorption. The ATATRP of methyl methacrylate was carried out in the presence of CuBr/PMDETA complex, without a sacrificial initiator, and the grafting density is found to be as high as 0.90 molecules/nm2. The organic–inorganic hybrid material thus prepared shows exceptional stability in organic solvents unlike unfunctionalized magnetite nanoparticles which tend to flocculate. The polymer brushes of various number average molecular weights were prepared and the molecular weight was determined using size exclusion chromatography, after degrafting the polymer from the magnetite core. Thermogravimetric analysis, X-ray photoelectron spectra and diffused reflection FT-IR were used to confirm the grafting reaction

    MMP-9 gene variants increase the risk for non-atopic asthma in children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Atopic and non-atopic wheezing may be caused by different etiologies: while eosinophils are more important in atopic asthmatic wheezers, neutrophils are predominantly found in BAL samples of young children with wheezing. Both neutrophils as well as eosinophils may secrete matrix metalloproteinase 9 (MMP-9). Considering that MMP-9 plays an important role in airway wall thickening and airway inflammation, it may influence the development of obstructive airway phenotypes in children. In the present study we investigated whether genetic variations in <it>MMP-9 </it>influence the development of different forms of childhood asthma.</p> <p>Methods</p> <p>Genotyping of four HapMap derived tagging SNPs in the <it>MMP-9 </it>gene was performed using MALDI-TOF MS in three cross sectional study populations of German children (age 9-11; N = 4,264) phenotyped for asthma and atopic diseases according to ISAAC standard procedures. Effects of single SNPs and haplotypes were studied using SAS 9.1.3 and Haploview.</p> <p>Results</p> <p>SNP rs2664538 significantly increased the risk for non-atopic wheezing (OR 2.12, 95%CI 1.40-3.21, p < 0.001) and non-atopic asthma (OR 1.66, 95%CI 1.12-2.46, p = 0.011). Furthermore, the minor allele of rs3918241 may be associated with decreased expiratory flow measurements in non-atopic children. No significant effects on the development of atopy or total serum IgE levels were observed.</p> <p>Conclusions</p> <p>Our results have shown that homozygocity for <it>MMP-9 </it>variants increase the risk to develop non-atopic forms of asthma and wheezing, which may be explained by a functional role of MMP-9 in airway remodeling. These results suggest that different wheezing disorders in childhood are affected differently by genetic alterations.</p

    Fitting the Elementary Rate Constants of the P-gp Transporter Network in the hMDR1-MDCK Confluent Cell Monolayer Using a Particle Swarm Algorithm

    Get PDF
    P-glycoprotein, a human multidrug resistance transporter, has been extensively studied due to its importance to human health and disease. In order to understand transport kinetics via P-gp, confluent cell monolayers overexpressing P-gp are widely used. The purpose of this study is to obtain the mass action elementary rate constants for P-gp's transport and to functionally characterize members of P-gp's network, i.e., other transporters that transport P-gp substrates in hMDR1-MDCKII confluent cell monolayers and are essential to the net substrate flux. Transport of a range of concentrations of amprenavir, loperamide, quinidine and digoxin across the confluent monolayer of cells was measured in both directions, apical to basolateral and basolateral to apical. We developed a global optimization algorithm using the Particle Swarm method that can simultaneously fit all datasets to yield accurate and exhaustive fits of these elementary rate constants. The statistical sensitivity of the fitted values was determined by using 24 identical replicate fits, yielding simple averages and standard deviations for all of the kinetic parameters, including the efflux active P-gp surface density. Digoxin required additional basolateral and apical transporters, while loperamide required just a basolateral tranporter. The data were better fit by assuming bidirectional transporters, rather than active importers, suggesting that they are not MRP or active OATP transporters. The P-gp efflux rate constants for quinidine and digoxin were about 3-fold smaller than reported ATP hydrolysis rate constants from P-gp proteoliposomes. This suggests a roughly 3∶1 stoichiometry between ATP hydrolysis and P-gp transport for these two drugs. The fitted values of the elementary rate constants for these P-gp substrates support the hypotheses that the selective pressures on P-gp are to maintain a broad substrate range and to keep xenobiotics out of the cytosol, but not out of the apical membrane

    Molecular mechanisms of glucocorticoids action: implications for treatment of rhinosinusitis and nasal polyposis

    Get PDF
    Intra-nasal glucocorticoids are the most effective drugs available for rhinosinusitis and nasal polyposis treatment. Their effectiveness depends on many factors and not all of them have been well recognized so far. The authors present the basic information on molecular mechanisms of glucocorticoid action, direct and indirect effects of glucocorticoids on transcription of genes encoding inflammatory mediators. They focus on recently proved nongenomic mechanisms which appear quickly, from several seconds to minutes after glucocorticoid administration and discuss clinical implications resulting from this knowledge. Discovery of nongenomic glucocorticoid actions allows for better use of these drugs in clinical practice

    HPV vaccine decision making in pediatric primary care: a semi-structured interview study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite national recommendations, as of 2009 human papillomavirus (HPV) vaccination rates were low with < 30% of adolescent girls fully vaccinated. Research on barriers to vaccination has focused separately on parents, adolescents, or clinicians and not on the decision making process among all participants at the point of care. By incorporating three distinct perspectives, we sought to generate hypotheses to inform interventions to increase vaccine receipt.</p> <p>Methods</p> <p>Between March and June, 2010, we conducted qualitative interviews with 20 adolescent-mother-clinician triads (60 individual interviews) directly after a preventive visit with the initial HPV vaccine due. Interviews followed a guide based on published HPV literature, involved 9 practices, and continued until saturation of the primary themes was achieved. Purposive sampling balanced adolescent ages and practice type (urban resident teaching versus non-teaching). Using a modified grounded theory approach, we analyzed data with NVivo8 software both within and across triads to generate primary themes.</p> <p>Results</p> <p>The study population was comprised of 20 mothers (12 Black, 9 < high school diploma), 20 adolescents (ten 11-12 years old), and 20 clinicians (16 female). Nine adolescents received the HPV vaccine at the visit, eight of whom were African American. Among the 11 not vaccinated, all either concurrently received or were already up-to-date on Tdap and MCV4. We did not observe systematic patterns of vaccine acceptance or refusal based on adolescent age or years of clinician experience. We identified 3 themes: (1) Parents delayed, rather than refused vaccination, and when they expressed reluctance, clinicians were hesitant to engage them in discussion. (2) Clinicians used one of two strategies to present the HPV vaccine, either presenting it as a routine vaccine with no additional information or presenting it as optional and highlighting risks and benefits. (3) Teens considered themselves passive participants in decision making, even when parents and clinicians reported including them in the process.</p> <p>Conclusions</p> <p>Programs to improve HPV vaccine delivery in primary care should focus on promoting effective parent-clinician communication. Research is needed to evaluate strategies to help clinicians engage reluctant parents and passive teens in discussion and measure the impact of distinct clinician decision making approaches on HPV vaccine delivery.</p

    Towards a consistent mechanism of emulsion polymerization—new experimental details

    Get PDF
    The application of atypical experimental methods such as conductivity measurements, optical microscopy, and nonstirred polymerizations to investigations of the ‘classical’ batch ab initio emulsion polymerization of styrene revealed astonishing facts. The most important result is the discovery of spontaneous emulsification leading to monomer droplets even in the quiescent styrene in water system. These monomer droplets with a size between a few and some hundreds of nanometers, which are formed by spontaneous emulsification as soon as styrene and water are brought into contact, have a strong influence on the particle nucleation, the particle morphology, and the swelling of the particles. Experimental results confirm that micelles of low-molecular-weight surfactants are not a major locus of particle nucleation. Brownian dynamics simulations show that the capture of matter by the particles strongly depends on the polymer volume fraction and the size of the captured species (primary free radicals, oligomers, single monomer molecules, or clusters)

    Monocyte Scintigraphy in Rheumatoid Arthritis: The Dynamics of Monocyte Migration in Immune-Mediated Inflammatory Disease

    Get PDF
    Background: Macrophages are principal drivers of synovial inflammation in rheumatoid arthritis (RA), a prototype immune-mediated inflammatory disease. Conceivably, synovial macrophages are continuously replaced by circulating monocytes in RA. Animal studies from the 1960s suggested that macrophage replacement by monocytes is a slow process in chronic inflammatory lesions. Translation of these data into the human condition has been hampered by the lack of available techniques to analyze monocyte migration in man. Methods/Principal Findings: We developed a technique that enabled us to analyze the migration of labelled autologous monocytes in RA patients using single photon emission computer tomography (SPECT). We isolated CD14+ monocytes by CliniMACS in 8 patients and labeled these with technetium-99m (99m-Tc-HMPAO). Monocytes were re-infused into the same patient. Using SPECT we calculated that a very small but specific fraction of 3.4x10(-3) (0.95-5.1x10(-3)) % of re-infused monocytes migrated to the inflamed joints, being detectable within one hour after re-infusion. Conclusions/Significance: The results indicate monocytes migrate continuously into the inflamed synovial tissue of RA patients, but at a slow macrophage-replacement rate. This suggests that the rapid decrease in synovial macrophages that occurs after antirheumatic treatment might rather be explained by an alteration in macrophage retention than in monocyte influx and that RA might be particularly sensitive to treatments targeting inflammatory cell retention
    corecore