4 research outputs found

    Tunable graphene system with two decoupled monolayers

    Get PDF
    The use of two truly two-dimensional gapless semiconductors, monolayer and bilayer graphene, as current-carrying components in field-effect transistors (FET) gives access to new types of nanoelectronic devices. Here, we report on the development of graphene-based FETs containing two decoupled graphene monolayers manufactured from a single one folded during the exfoliation process. The transport characteristics of these newly-developed devices differ markedly from those manufactured from a single-crystal bilayer. By analyzing Shubnikov-de Haas oscillations, we demonstrate the possibility to independently control the carrier densities in both layers using top and bottom gates, despite there being only a nanometer scale separation between them

    Competitive Equilibrium and Trading Networks: A Network Flow Approach

    Get PDF
    Under full substitutability of preferences, it has been shown that a competitive equilibrium exists in trading networks, and is equivalent (after a restriction to equilibrium trades) to (chain) stable outcomes. In this paper, we formulate the problem of finding an efficient outcome as a generalized submodular flow problem on a suitable network. Equivalence with seemingly weaker notions of stability follows directly from the optimality conditions, in particular the absence of improvement cycles in the flow problem. Our formulation yields strongly polynomial algorithms for finding competitive equilibria in trading networks, and testing (chain) stability
    corecore