54 research outputs found

    The hypertoric intersection cohomology ring

    Full text link
    We present a functorial computation of the equivariant intersection cohomology of a hypertoric variety, and endow it with a natural ring structure. When the hyperplane arrangement associated with the hypertoric variety is unimodular, we show that this ring structure is induced by a ring structure on the equivariant intersection cohomology sheaf in the equivariant derived category. The computation is given in terms of a localization functor which takes equivariant sheaves on a sufficiently nice stratified space to sheaves on a poset.Comment: Significant revisions in Section 5, with several corrected proof

    What is 3C 324?

    Get PDF
    We report ground based and HST observations of the z=1.206 radio galaxy 3C 324, a prototypical example of the radio-optical ``alignment effect.'' While infrared images shows a simple, round object reminiscent of a giant elliptical galaxy, the HST images reveal a spectacular, linear chain of UV-bright subcomponents closely aligned with the radio axis. In light of the available data, we consider various scenarios to explain the properties of 3C 324, as well as evidence for the presence of dust which may obscure the central active nucleus and scatter its light to produce the polarized, aligned continuum seen in the rest-frame UV.Comment: 9 pages, uuencoded gzipped postscript. To appear in ``Galaxies in the Young Universe,'' ed. H. Hippelein, Springer Verlag. Revised version (hopefully) corrects postscript error which garbled the last pag

    The lifecycle of powerful AGN outflows

    Get PDF
    During the course of this conference, much evidence was presented that points to an intimate connection between the energetic outflows driven by AGN and the energy budget and quite possibly also the evolution of their gaseous environments. However, it is still not clear if and how the AGN activity is triggered by the cooling gas, how long the activity lasts for and how these effects give rise to the observed distribution of morphologies of the outflows. In this contribution we concentrate on the high radio luminosity end of the AGN population. While most of the heating of the environmental gas may be due to less luminous and energetic outflows, these more powerful objects have a very profound influence on their surroundings. We will describe a simple model for powerful radio galaxies and radio-loud quasars that explains the dichotomy of their large-scale radio morphologies as well as their radio luminosity function.Comment: 6 pages, contribution to 'Heating vs. coooling in galaxies and galaxy clusters', Garching 2006, proceedings to be published by Springer (ESO Astrophysics Symposia), eds. H. Boehringer, P. Schuecker, G.W. Pratt & A. Finogueno

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    A VLBI search for compact components in extended high redshift quasars

    No full text

    A VLBI search for compact components in extended high redshift quasars

    No full text
    Wetensch. publicati

    Compact structure in the powerful distant radio source 4C 04.81

    No full text
    corecore