490 research outputs found

    Spreading and shortest paths in systems with sparse long-range connections

    Full text link
    Spreading according to simple rules (e.g. of fire or diseases), and shortest-path distances are studied on d-dimensional systems with a small density p per site of long-range connections (``Small-World'' lattices). The volume V(t) covered by the spreading quantity on an infinite system is exactly calculated in all dimensions. We find that V(t) grows initially as t^d/d for t>t^*$, generalizing a previous result in one dimension. Using the properties of V(t), the average shortest-path distance \ell(r) can be calculated as a function of Euclidean distance r. It is found that \ell(r) = r for r<r_c=(2p \Gamma_d (d-1)!)^{-1/d} log(2p \Gamma_d L^d), and \ell(r) = r_c for r>r_c. The characteristic length r_c, which governs the behavior of shortest-path lengths, diverges with system size for all p>0. Therefore the mean separation s \sim p^{-1/d} between shortcut-ends is not a relevant internal length-scale for shortest-path lengths. We notice however that the globally averaged shortest-path length, divided by L, is a function of L/s only.Comment: 4 pages, 1 eps fig. Uses psfi

    Scaling for the Percolation Backbone

    Full text link
    We study the backbone connecting two given sites of a two-dimensional lattice separated by an arbitrary distance rr in a system of size LL. We find a scaling form for the average backbone mass: ∌LdBG(r/L)\sim L^{d_B}G(r/L), where GG can be well approximated by a power law for 0≀x≀10\le x\le 1: G(x)∌xψG(x)\sim x^{\psi} with ψ=0.37±0.02\psi=0.37\pm 0.02. This result implies that ∌LdB−ψrψ \sim L^{d_B-\psi}r^{\psi} for the entire range 0<r<L0<r<L. We also propose a scaling form for the probability distribution P(MB)P(M_B) of backbone mass for a given rr. For r≈L,P(MB)r\approx L, P(M_B) is peaked around LdBL^{d_B}, whereas for râ‰ȘL,P(MB)r\ll L, P(M_B) decreases as a power law, MB−τBM_B^{-\tau_B}, with τB≃1.20±0.03\tau_B\simeq 1.20\pm 0.03. The exponents ψ\psi and τB\tau_B satisfy the relation ψ=dB(τB−1)\psi=d_B(\tau_B-1), and ψ\psi is the codimension of the backbone, ψ=d−dB\psi=d-d_B.Comment: 3 pages, 5 postscript figures, Latex/Revtex/multicols/eps

    Mean-field solution of the small-world network model

    Full text link
    The small-world network model is a simple model of the structure of social networks, which simultaneously possesses characteristics of both regular lattices and random graphs. The model consists of a one-dimensional lattice with a low density of shortcuts added between randomly selected pairs of points. These shortcuts greatly reduce the typical path length between any two points on the lattice. We present a mean-field solution for the average path length and for the distribution of path lengths in the model. This solution is exact in the limit of large system size and either large or small number of shortcuts.Comment: 14 pages, 2 postscript figure

    Ising model in small-world networks

    Full text link
    The Ising model in small-world networks generated from two- and three-dimensional regular lattices has been studied. Monte Carlo simulations were carried out to characterize the ferromagnetic transition appearing in these systems. In the thermodynamic limit, the phase transition has a mean-field character for any finite value of the rewiring probability p, which measures the disorder strength of a given network. For small values of p, both the transition temperature and critical energy change with p as a power law. In the limit p -> 0, the heat capacity at the transition temperature diverges logarithmically in two-dimensional (2D) networks and as a power law in 3D.Comment: 6 pages, 7 figure

    Structure of Growing Networks: Exact Solution of the Barabasi--Albert's Model

    Full text link
    We generalize the Barab\'{a}si--Albert's model of growing networks accounting for initial properties of sites and find exactly the distribution of connectivities of the network P(q)P(q) and the averaged connectivity qˉ(s,t)\bar{q}(s,t) of a site ss in the instant tt (one site is added per unit of time). At long times P(q)∌q−γP(q) \sim q^{-\gamma} at q→∞q \to \infty and qˉ(s,t)∌(s/t)−ÎČ\bar{q}(s,t) \sim (s/t)^{-\beta} at s/t→0s/t \to 0, where the exponent Îł\gamma varies from 2 to ∞\infty depending on the initial attractiveness of sites. We show that the relation ÎČ(γ−1)=1\beta(\gamma-1)=1 between the exponents is universal.Comment: 4 pages revtex (twocolumn, psfig), 1 figur

    Spin-dependent tunneling through high-k LaAlO3

    Full text link
    We report on the use of the LaAlO3 (LAO) high-k dielectric as a tunnel barrier in magnetic tunnel junctions. From tunnel magnetoresistance (TMR) measurements on epitaxial La2/3Sr1/3MnO3/LAO/La2/3Sr1/3MnO3 junctions, we estimate a spin polarization of 77% at low temperature for the La2/3Sr1/3MnO3/LAO interface. Remarkably, the TMR of La2/3Sr1/3MnO3/LAO/Co junctions at low bias is negative, evidencing a negative spin polarization of Co at the interface with LAO, and its bias dependence is very similar to that of La2/3Sr1/3MnO3/STO/Co junctions. We discuss possible reasons for this behaviour.Comment: 14 pages, 3 figure

    Polynomial kernels for 3-leaf power graph modification problems

    Full text link
    A graph G=(V,E) is a 3-leaf power iff there exists a tree T whose leaves are V and such that (u,v) is an edge iff u and v are at distance at most 3 in T. The 3-leaf power graph edge modification problems, i.e. edition (also known as the closest 3-leaf power), completion and edge-deletion, are FTP when parameterized by the size of the edge set modification. However polynomial kernel was known for none of these three problems. For each of them, we provide cubic kernels that can be computed in linear time for each of these problems. We thereby answer an open problem first mentioned by Dom, Guo, Huffner and Niedermeier (2005).Comment: Submitte

    Small-world networks: Evidence for a crossover picture

    Full text link
    Watts and Strogatz [Nature 393, 440 (1998)] have recently introduced a model for disordered networks and reported that, even for very small values of the disorder pp in the links, the network behaves as a small-world. Here, we test the hypothesis that the appearance of small-world behavior is not a phase-transition but a crossover phenomenon which depends both on the network size nn and on the degree of disorder pp. We propose that the average distance ℓ\ell between any two vertices of the network is a scaling function of n/n∗n / n^*. The crossover size n∗n^* above which the network behaves as a small-world is shown to scale as n∗(pâ‰Ș1)∌p−τn^*(p \ll 1) \sim p^{-\tau} with τ≈2/3\tau \approx 2/3.Comment: 5 pages, 5 postscript figures (1 in color), Latex/Revtex/multicols/epsf. Accepted for publication in Physical Review Letter

    Small-world properties of the Indian Railway network

    Full text link
    Structural properties of the Indian Railway network is studied in the light of recent investigations of the scaling properties of different complex networks. Stations are considered as `nodes' and an arbitrary pair of stations is said to be connected by a `link' when at least one train stops at both stations. Rigorous analysis of the existing data shows that the Indian Railway network displays small-world properties. We define and estimate several other quantities associated with this network.Comment: 5 pages, 7 figures. To be published in Phys. Rev.
    • 

    corecore