385 research outputs found

    The amyloid hypothesis in Alzheimer disease: new insights from new therapeutics

    Get PDF
    Many drugs that target amyloid-β (Aβ) in Alzheimer disease (AD) have failed to demonstrate clinical efficacy. However, four anti-Aβ antibodies have been shown to mediate the removal of amyloid plaque from brains of patients with AD, and the FDA has recently granted accelerated approval to one of these, aducanumab, using reduction of amyloid plaque as a surrogate end point. The rationale for approval and the extent of the clinical benefit from these antibodies are under intense debate. With the aim of informing this debate, we review clinical trial data for drugs that target Aβ from the perspective of the temporal interplay between the two pathognomonic protein aggregates in AD - Aβ plaques and tau neurofibrillary tangles - and their relationship to cognitive impairment, highlighting differences in drug properties that could affect their clinical performance. On this basis, we propose that Aβ pathology drives tau pathology, that amyloid plaque would need to be reduced to a low level (~20 centiloids) to reveal significant clinical benefit and that there will be a lag between the removal of amyloid and the potential to observe a clinical benefit. We conclude that the speed of amyloid removal from the brain by a potential therapy will be important in demonstrating clinical benefit in the context of a clinical trial

    Translating genetic risk of Alzheimer’s disease into mechanistic insight and drug targets

    Get PDF
    To provide better prevention and treatment, we need to understand the environmental and genetic risks of Alzheimer’s disease (AD). However, the definition of AD has been confounded with dementia in many studies. Thus, overinterpretation of genetic findings with regard to mechanisms and drug targets may explain, in part, controversies in the field. Here, we analyze the different forms of genetic risk of AD and how these can be used to model disease. We stress the importance of studying gene variants in the right cell types and in the right pathological context. The lack of mechanistic understanding of genetic variation has become the major bottleneck in the search for new drug targets for AD

    Parkin interacts with Ambra1 to induce mitophagy

    Get PDF
    Mutations in the gene encoding Parkin are a major cause of recessive Parkinson's disease. Recent work has shown that Parkin translocates from the cytosol to depolarized mitochondria and induces their autophagic removal (mitophagy). However, the molecular mechanisms underlying Parkin-mediated mitophagy are poorly understood. Here, we investigated whether Parkin interacts with autophagy-regulating proteins. We purified Parkin and associated proteins from HEK293 cells using tandem affinity purification and identified the Parkin interactors using mass spectrometry. We identified the autophagy-promoting protein Ambra1 (activating molecule in Beclin1-regulated autophagy) as a Parkin interactor. Ambra1 activates autophagy in the CNS by stimulating the activity of the class III phosphatidylinositol 3-kinase (PI3K) complex that is essential for the formation of new phagophores. We found Ambra1, like Parkin, to be widely expressed in adult mouse brain, including midbrain dopaminergic neurons. Endogenous Parkin and Ambra1 coimmunoprecipitated from HEK293 cells, SH-SY5Y cells, and adult mouse brain. We found no evidence for ubiquitination of Ambra1 by Parkin. The interaction of endogenous Parkin and Ambra1 strongly increased during prolonged mitochondrial depolarization. Ambra1 was not required for Parkin translocation to depolarized mitochondria but was critically important for subsequent mitochondrial clearance. In particular, Ambra1 was recruited to perinuclear clusters of depolarized mitochondria and activated class III PI3K in their immediate vicinity. These data identify interaction of Parkin with Ambra1 as a key mechanism for induction of the final clearance step of Parkin-mediated mitophagy

    When the dust settles: what did we learn from the bexarotene discussion?

    Full text link
    With 27 million people affected by Alzheimer's disease (AD), any proposal of a novel avenue for drug development is hot news. When Cramer and colleagues proposed last year that they could tackle AD pathology in an AD mouse model with bexarotene, a drug already in use in the clinic for other diseases, the news was covered worldwide by the popular press. Apolipoprotein E4 is the strongest genetic risk factor for AD and bexarotene appeared to exert spectacular effects on AD pathology when tested in APP/PS1 transgenic mice. One year later the slumbering discussion on the use of bexarotene in AD exploded in a flurry of papers. Four papers question the initial optimistic claims, while two others can only partially support the original work. We summarize here the available data and try to make sense out of the controversy. The major question is what we can learn from the experiments and what these studies imply for the further development of bexarotene in the clinic.status: publishe

    Identification and characterization of nanobodies targeting the EphA4 receptor

    Get PDF
    The ephrin receptor A4 (EphA4) is one of the receptors in the ephrin system that plays a pivotal role in a variety of cell-cell interactions, mostly studied during development. In addition, EphA4 has been found to play a role in cancer biology as well as in the pathogenesis of several neurological disorders such as stroke, spinal cord injury, multiple sclerosis, amyotrophic lateral sclerosis (ALS), and Alzheimer's disease. Pharmacological blocking of EphA4 has been suggested to be a therapeutic strategy for these disorders. Therefore, the aim of our study was to generate potent and selective Nanobodies against the ligand-binding domain of the human EphA4 receptor. Weidentified two Nanobodies, Nb 39 and Nb 53, that bind EphA4 with affinities in the nanomolar range. These Nanobodies were most selective for EphA4, with residual binding to EphA7 only. Using Alphascreen technology, we found that both Nanobodies displaced all known EphA4-binding ephrins from the receptor. Furthermore, Nb39 andNb53 inhibited ephrin-induced phosphorylationoftheEphA4proteininacell-basedassay. Finally, in a cortical neuron primary culture, both Nanobodies were able to inhibit endogenous EphA4-mediated growth-cone collapse induced by ephrin-B3. Our results demonstrate the potential of Nanobodies to target the ligand-binding domain of EphA4. These Nanobodiesmaydeservefurtherevaluationaspotentialtherapeutics in disorders in which EphA4-mediated signaling plays a role

    Cell–matrix interaction via CD44 is independently regulated by different metalloproteinases activated in response to extracellular Ca2+ influx and PKC activation

    Get PDF
    CD44 is an adhesion molecule that interacts with hyaluronic acid (HA) and undergoes sequential proteolytic cleavages in its ectodomain and intramembranous domain. The ectodomain cleavage is triggered by extracellular Ca2+ influx or the activation of protein kinase C. Here we show that CD44-mediated cell–matrix adhesion is terminated by two independent ADAM family metalloproteinases, ADAM10 and ADAM17, differentially regulated in response to those stimuli. Ca2+ influx activates ADAM10 by regulating the association between calmodulin and ADAM10, leading to CD44 ectodomain cleavage. Depletion of ADAM10 strongly inhibits the Ca2+ influx-induced cell detachment from matrix. On the other hand, phorbol ester stimulation activates ADAM17 through the activation of PKC and small GTPase Rac, inducing proteolysis of CD44. Furthermore, depletion of ADAM10 or ADAM17 markedly suppressed CD44-dependent cancer cell migration on HA, but not on fibronectin. The spatio-temporal regulation of two independent signaling pathways for CD44 cleavage plays a crucial role in cell–matrix interaction and cell migration

    Presenilin 1 mediates the turnover of telencephalin in hippocampal neurons via an autophagic degradative pathway

    Get PDF
    Presenilin 1 (PS1) interacts with telencephalin (TLN) and the amyloid precursor protein via their transmembrane domain (Annaert, W.G., C. Esselens, V. Baert, C. Boeve, G. Snellings, P. Cupers, K. Craessaerts, and B. De Strooper. 2001. Neuron. 32:579–589). Here, we demonstrate that TLN is not a substrate for γ-secretase cleavage, but displays a prolonged half-life in PS1−/− hippocampal neurons. TLN accumulates in intracellular structures bearing characteristics of autophagic vacuoles including the presence of Apg12p and LC3. Importantly, the TLN accumulations are suppressed by adenoviral expression of wild-type, FAD-linked and D257A mutant PS1, indicating that this phenotype is independent from γ-secretase activity. Cathepsin D deficiency also results in the localization of TLN to autophagic vacuoles. TLN mediates the uptake of microbeads concomitant with actin and PIP2 recruitment, indicating a phagocytic origin of TLN accumulations. Absence of endosomal/lysosomal proteins suggests that the TLN-positive vacuoles fail to fuse with endosomes/lysosomes, preventing their acidification and further degradation. Collectively, PS1 deficiency affects in a γ-secretase–independent fashion the turnover of TLN through autophagic vacuoles, most likely by an impaired capability to fuse with lysosomes

    Microglial Expression of the Wnt Signaling Modulator DKK2 Differs between Human Alzheimer's Disease Brains and Mouse Neurodegeneration Models

    Get PDF
    Wnt signaling is crucial for synapse and cognitive function. Indeed, deficient Wnt signaling is causally related to increased expression of DKK1, an endogenous negative Wnt regulator, and synapse loss, both of which likely contribute to cognitive decline in Alzheimer's disease (AD). Increasingly, AD research efforts have probed the neuroinflammatory role of microglia, the resident immune cells of the CNS, which have furthermore been shown to be modulated by Wnt signaling. The DKK1 homolog DKK2 has been previously identified as an activated response and/or disease-associated microglia (DAM/ARM) gene in a mouse model of AD. Here, we performed a detailed analysis of DKK2 in mouse models of neurodegeneration, and in human AD brain. In APP/PS1 and APPNL-G-F AD mouse model brains as well as in SOD1G93A ALS mouse model spinal cords, but not in control littermates, we demonstrated significant microgliosis and microglial Dkk2 mRNA upregulation in a disease-stage-dependent manner. In the AD models, these DAM/ARM Dkk2+ microglia preferentially accumulated close to βAmyloid plaques. Furthermore, recombinant DKK2 treatment of rat hippocampal primary neurons blocked WNT7a-induced dendritic spine and synapse formation, indicative of an anti-synaptic effect similar to that of DKK1. In stark contrast, no such microglial DKK2 upregulation was detected in the postmortem human frontal cortex from individuals diagnosed with AD or pathologic aging. In summary, the difference in microglial expression of the DAM/ARM gene DKK2 between mouse models and human AD brain highlights the increasingly recognized limitations of using mouse models to recapitulate facets of human neurodegenerative disease.Significance StatementThe endogenous negative Wnt regulator Dkk2 is significantly upregulated at the mRNA level in microglia of Alzheimer's disease (AD) mouse models, implying that microglia derived Dkk2 protein may detrimentally contribute to a reduced Wnt signaling tone in the AD brain, a known pathophysiological manifestation. Indeed, recombinant DKK2 prevented Wnt-dependent synapse formation in cultured neurons. However, DKK2 upregulation was not recapitulated in postmortem human AD brains. The success of neurodegeneration animal models has relied on pathophysiology that for the most part correctly modelled human disease. Increasingly, however, limitations to the validity of mouse models to recapitulate human neurodegenerative disease have become apparent, as evidenced by the present study by the difference in microglial DKK2 expression between AD mouse models and human AD brain

    The Yeast Complex I Equivalent NADH Dehydrogenase Rescues pink1 Mutants

    Get PDF
    Pink1 is a mitochondrial kinase involved in Parkinson's disease, and loss of Pink1 function affects mitochondrial morphology via a pathway involving Parkin and components of the mitochondrial remodeling machinery. Pink1 loss also affects the enzymatic activity of isolated Complex I of the electron transport chain (ETC); however, the primary defect in pink1 mutants is unclear. We tested the hypothesis that ETC deficiency is upstream of other pink1-associated phenotypes. We expressed Saccaromyces cerevisiae Ndi1p, an enzyme that bypasses ETC Complex I, or sea squirt Ciona intestinalis AOX, an enzyme that bypasses ETC Complex III and IV, in pink1 mutant Drosophila and find that expression of Ndi1p, but not of AOX, rescues pink1-associated defects. Likewise, loss of function of subunits that encode for Complex I–associated proteins displays many of the pink1-associated phenotypes, and these defects are rescued by Ndi1p expression. Conversely, expression of Ndi1p fails to rescue any of the parkin mutant phenotypes. Additionally, unlike pink1 mutants, fly parkin mutants do not show reduced enzymatic activity of Complex I, indicating that Ndi1p acts downstream or parallel to Pink1, but upstream or independent of Parkin. Furthermore, while increasing mitochondrial fission or decreasing mitochondrial fusion rescues mitochondrial morphological defects in pink1 mutants, these manipulations fail to significantly rescue the reduced enzymatic activity of Complex I, indicating that functional defects observed at the level of Complex I enzymatic activity in pink1 mutant mitochondria do not arise from morphological defects. Our data indicate a central role for Complex I dysfunction in pink1-associated defects, and our genetic analyses with heterologous ETC enzymes suggest that Ndi1p-dependent NADH dehydrogenase activity largely acts downstream of, or in parallel to, Pink1 but upstream of Parkin and mitochondrial remodeling
    • …
    corecore