13 research outputs found
Targeted disruption of Mib2 causes exencephaly with a variable penetrance.
Mib1 and Mib2 ubiquitin ligases are very similar in their domain construction. They partake in the Notch signaling pathway by ubiquitinating the Notch receptors Delta and Jagged prior to endocytosis. We have created a targeted mutation of Mib2 and show that its phenotype is a variable penetrance, failure to close the cranial neural tube. The penetrance depends on the genetic background but it appears that Mib2 is not completely essential in mouse development
Macroscopic behavior of ferronematic gels and elastomers
We present the derivation of the macroscopic equations for uniaxial ferronematic gels and elastomers. We deal with the superparamagnetic case, where no permanent magnetization is present and the anisotropy is provided by the nematic director. We include the magnetization as an independent dynamic degree of freedom. As a consequence special emphasis is laid on possible static and dynamic cross-couplings between magnetization and the non-magnetic degrees of freedom, as director reorientations, flow, elastic strains and relative rotations between director and the elastic network. In particular, we find reversible dynamic cross-couplings among rotations of the magnetization, the director, relative rotations, and deformational flow that allow for new possibilities to manipulate such materials. Application of simple (oscillatory) shear induces, in general, a finite magnetization normal to the shear plane and a relative rotation in the shear plane, whose amplitudes are linear in the shear rate. Induced magnetization, induced relative rotation and the director are mutually orthogonal, with the director aligned obliquely to the flow direction. This orientation is independent of the shear rate and is a material property
Macroscopic behavior of ferrocholesteric liquid crystals and ferrocholesteric gels and elastomers
We study the influence of macroscopic chirality on the macroscopic properties of superparamagnetic liquid crystals and gels. Specifically we derive macroscopic dynamic equations for ferrocholesteric low molecular weight (LMW) liquid crystals and for ferrocholesteric gels and elastomers in the local description using the director field as macroscopic variable. The magnetization is treated as a macroscopic dynamic degree of freedom and its coupling to all other macroscopic variables is examined in detail. We incorporate into our dynamic analysis terms that are linear in a magnetic field giving rise to a number of cross-coupling terms not possible otherwise. A number of properties that are unique to the class of systems studied arise. As an example for a static property we find a term in the generalized energy which is linear in the electric field and quadratic in the magnetic field. We find that applying a magnetic field to a ferrocholesteric can lead to reversible electric currents, heat currents and concentration currents, which change their sign with a sign change of macroscopic chirality. As an example of a rather intriguing dissipative dynamic contribution we point out that for ferrocholesterics and for ferrocholesteric gels and elastomers in a magnetic field extensional flow leads to electric and heat currents