71 research outputs found

    Mitochondrial Involvement in Vertebrate Speciation? The Case of Mito-nuclear Genetic Divergence in Chameleons

    Get PDF
    Compatibility between the nuclear (nDNA) and mitochondrial (mtDNA) genomes is important for organismal health. However, its significance for major evolutionary processes such as speciation is unclear, especially in vertebrates. We previously identified a sharp mtDNA-specific sequence divergence between morphologically indistinguishable chameleon populations (Chamaeleo chamaeleon recticrista) across an ancient Israeli marine barrier (Jezreel Valley). Because mtDNA introgression and gender-based dispersal were ruled out, we hypothesized that mtDNA spatial division was maintained by mito-nuclear functional compensation. Here, we studied RNA-seq generated from each of ten chameleons representing the north and south populations and identified candidate nonsynonymous substitutions (NSSs) matching the mtDNA spatial distribution. The most prominent NSS occurred in 14 nDNA-encoded mitochondrial proteins. Increased chameleon sample size (N = 70) confirmed the geographic differentiation in POLRMT, NDUFA5, ACO1, LYRM4, MARS2, and ACAD9. Structural and functionality evaluation of these NSSs revealed high functionality. Mathematical modeling suggested that this mito-nuclear spatial divergence is consistent with hybrid breakdown. We conclude that our presented evidence and mathematical model underline mito-nuclear interactions as a likely role player in incipient speciation in vertebrates

    Deconvolution of Expression for Nascent RNA sequencing data (DENR) highlights pre-RNA isoform diversity in human cells.

    Get PDF
    MOTIVATION: Quantification of isoform abundance has been extensively studied at the mature-RNA level using RNA-seq but not at the level of precursor RNAs using nascent RNA sequencing. RESULTS: We address this problem with a new computational method called Deconvolution of Expression for Nascent RNA sequencing data (DENR), which models nascent RNA sequencing read counts as a mixture of user-provided isoforms. The baseline algorithm is enhanced by machine-learning predictions of active transcription start sites and an adjustment for the typical "shape profile" of read counts along a transcription unit. We show that DENR outperforms simple read-count-based methods for estimating gene and isoform abundances, and that transcription of multiple pre-RNA isoforms per gene is widespread, with frequent differences between cell types. In addition, we provide evidence that a majority of human isoform diversity derives from primary transcription rather than from post-transcriptional processes. AVAILABILITY: DENR and nascentRNASim are freely available at https://github.com/CshlSiepelLab/DENR (version v1.0.0) and https://github.com/CshlSiepelLab/nascentRNASim (version v0.3.0). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online

    Mineralogical Transformations and Soil Development in Shale Across a Latitudinal Climosequence

    Get PDF
    To investigate factors controlling soil formation, we established a climosequence as part of the Susquehanna-Shale Hills Critical Zone Observatory (SSHCZO) in central Pennsylvania, USA. Sites were located on organic matter-poor, iron-rich Silurian-aged shale in Wales, Pennsylvania, Virginia, Tennessee, Alabama, and Puerto Rico, although this last site is underlain by a younger shale. Across the climosequence, mean annual temperature (MAT) increases from 7 to 24°C and mean annual precipitation (MAP) ranges from 100 to 250 cm. Variations in soil characteristics along the climosequence, including depth, morphology, particle-size distribution, geochemistry, and bulk and clay mineralogy, were characterized to investigate the role of climate in controlling mineral transformations and soil formation. Overall, soil horizonation, depth, clay content, and chemical depletion increase with increasing temperature and precipitation, consistent with enhanced soil development and weathering processes in warmer and wetter locations. Secondary minerals are present at higher concentrations at the warmest sites of the climosequence; kaolinite increases from \u3c5% at northern sites in Wales and Pennsylvania to 30% in Puerto Rico. The deepest observed weathering reaction is plagioclase feldspar dissolution followed by the transformation of chlorite and illite to vermiculite and hydroxy-interlayered vermiculite. Plagioclase, although constituting \u3c12% of the initial shale mineralogy, may be the profile initiating reaction that begins shale bedrock transformation to weathered regolith. Weathering of the more abundant chlorite and illite minerals (∌70% of initial mineralogy), however, are more likely controlling regolith thickness. Climate appears to play a central role in driving soil formation and mineral weathering reactions across the climosequence

    Considering Soil Potassium Pools with Dissimilar Plant Availability

    Get PDF
    Soil potassium (K) has traditionally been portrayed as residing in four functional pools: solution K, exchangeable K, interlayer (sometimes referred to as “fixed” or “nonexchangeable”) K, and structural K in primary minerals. However, this four-pool model and associated terminology have created confusion in understanding the dynamics of K supply to plants and the fate of K returned to the soil in fertilizers, residues, or waste products. This chapter presents an alternative framework to depict soil K pools. The framework distinguishes between micas and feldspars as K-bearing primary minerals, based on the presence of K in interlayer positions or three-dimensional framework structures, respectively; identifies a pool of K in neoformed secondary minerals that can include fertilizer reaction products; and replaces the “exchangeable” K pool with a pool defined as “surface-adsorbed” K, identifying where the K is located and the mechanism by which it is held rather than identification based on particular soil testing procedures. In this chapter, we discuss these K pools and their behavior in relation to plant K acquisition and soil K dynamics

    Cation Exchange Properties of Micas

    No full text
    • 

    corecore