18 research outputs found

    The MyD88+ phenotype is an adverse prognostic factor in epithelial ovarian cancer

    Get PDF
    The prognosis of epithelial ovarian cancer is poor in part due to the high frequency of chemoresistance. Recent evidence points to the Toll-like receptor-4 (TLR4), and particularly its adaptor protein MyD88, as one potential mediator of this resistance. This study aims to provide further evidence that MyD88 positive cancer cells are clinically significant, stem-like and reproducibly detectable for the purposes of prognostic stratification. Expression of TLR4 and MyD88 was assessed immunohistochemically in 198 paraffin-embedded ovarian tissues and in an embryonal carcinoma model of cancer stemness. In parallel, expression of TLR4 and MyD88 mRNA and regulatory microRNAs (miR-21 and miR-146a) was assessed, as well as in a series of chemosensitive and resistant cancer cells lines. Functional analysis of the pathway was assessed in chemoresistant SKOV-3 ovarian cancer cells. TLR4 and MyD88 expression can be reproducibly assessed via immunohistochemistry using a semi-quantitative scoring system. TLR4 expression was present in all ovarian epithelium (normal and neoplastic), whereas MyD88 was restricted to neoplastic cells, independent of tumour grade and associated with reduced progression-free and overall survival, in an immunohistological specific subset of serous carcinomas, p<0.05. MiR-21 and miR-146a expression was significantly increased in MyD88 negative cancers (p<0.05), indicating their participation in regulation. Significant alterations in MyD88 mRNA expression were observed between chemosensitive and chemoresistant cells and tissue. Knockdown of TLR4 in SKOV-3 ovarian cells recovered chemosensitivity. Knockdown of MyD88 alone did not. MyD88 expression was down-regulated in differentiated embryonal carcinoma (NTera2) cells, supporting the MyD88+ cancer stem cell hypothesis. Our findings demonstrate that expression of MyD88 is associated with significantly reduced patient survival and altered microRNA levels and suggest an intact/functioning TLR4/MyD88 pathway is required for acquisition of the chemoresistant phenotype. Ex vivo manipulation of ovarian cancer stem cell (CSC) differentiation can decrease MyD88 expression, providing a potentially valuable CSC model for ovarian cancer

    Endosomal gene expression: a new indicator for prostate cancer patient prognosis?

    Get PDF
    Prostate cancer continues to be a major cause of morbidity and mortality in men, but a method for accurate prognosis in these patients is yet to be developed. The recent discovery of altered endosomal biogenesis in prostate cancer has identified a fundamental change in the cell biology of this cancer, which holds great promise for the identification of novel biomarkers that can predict disease outcomes. Here we have identified significantly altered expression of endosomal genes in prostate cancer compared to non-malignant tissue in mRNA microarrays and confirmed these findings by qRT-PCR on fresh-frozen tissue. Importantly, we identified endosomal gene expression patterns that were predictive of patient outcomes. Two endosomal tri-gene signatures were identified from a previously published microarray cohort and had a significant capacity to stratify patient outcomes. The expression of APPL1, RAB5A, EEA1, PDCD6IP, NOX4 and SORT1 were altered in malignant patient tissue, when compared to indolent and normal prostate tissue. These findings support the initiation of a case-control study using larger cohorts of prostate tissue, with documented patient outcomes, to determine if different combinations of these new biomarkers can accurately predict disease status and clinical progression in prostate cancer patients.Ian R.D. Johnson, Emma J. Parkinson-Lawrence, Helen Keegan, Cathy D. Spillane, Jacqui Barry-O'Crowley, William R. Watson, Stavros Selemidis, Lisa M. Butler, John J. O'Leary, and Doug A. Brook

    The Role of HPV in Determining Treatment, Survival, and Prognosis of Head and Neck Squamous Cell Carcinoma.

    No full text
    Peer reviewed: TrueHuman papillomavirus (HPV) infection has been identified as a significant etiological agent in the development of head and neck squamous cell carcinoma (HNSCC). HPV's involvement has alluded to better survival and prognosis in patients and suggests that different treatment strategies may be appropriate for them. Only some data on the epidemiology of HPV infection in the oropharyngeal, oral cavity, and laryngeal SCC exists in Europe. Thus, this study was carried out to investigate HPV's impact on HNSCC patient outcomes in the Irish population, one of the largest studies of its kind using consistent HPV testing techniques. A total of 861 primary oropharyngeal, oral cavity, and laryngeal SCC (OPSCC, OSCC, LSCC) cases diagnosed between 1994 and 2013, identified through the National Cancer Registry of Ireland (NCRI), were obtained from hospitals across Ireland and tested for HPV DNA using Multiplex PCR Luminex technology based in and sanctioned by the International Agency for Research on Cancer (IARC). Both overall and cancer-specific survival were significantly improved amongst all HPV-positive patients together, though HPV status was only a significant predictor of survival in the oropharynx. Amongst HPV-positive patients in the oropharynx, surgery alone was associated with prolonged survival, alluding to the potential for de-escalation of treatment in HPV-related OPSCC in particular. Cumulatively, these findings highlight the need for continued investigation into treatment pathways for HPV-related OPSCC, the relevance of introducing boys into national HPV vaccination programs, and the relevance of the nona-valent Gardasil-9 vaccine to HNSCC prevention

    The effect of silencing MyD88 and TLR4 mRNA on the chemoresponsive properties of SKOV-3 cells.

    No full text
    <p>SKOV-3 cells were left untransfected (Unt), transfected with negative control siRNA (siNeg), MyD88 targeting siRNA (siMyD88) or TLR4 targeting siRNA (siTLR4). The transfected cells were incubated for 72 hrs before either harvesting for mRNA analysis (A), for protein analysis (B) or treatment with paclitaxel (C). (A) MyD88 and TLR4 mRNA expression levels were evaluated by TaqMan RT-PCR. MyD88 and TLR4 mRNA expression was normalised to that of an endogenous control, B2M, and calibrated to that of untreated cells to establish the relative percentage of mRNA expression (n = 3, mean +SD). (B) MyD88 and TLR4 mRNA expression levels were evaluated by western blot analysis. GAPDH was used as a loading control. (C) Transfected cells were either left untreated, treated with DMSO (vehicle control) or 3.5 nM of paclitaxel (IC25). 48 hrs post treatment, cell viability was assessed by means of the CCK-8 assay. % cell viability rate was calculated by comparing the absorbance values for the vehicle control to the corresponding paclitaxel treated samples. Results are expressed as mean +SD, n = 3; *p<0.05, **p<0.01 (un-paired Student's t-test).</p
    corecore