1,138 research outputs found

    The Infectious Disease Ontology in the Age of COVID-19

    Get PDF
    The Infectious Disease Ontology (IDO) is a suite of interoperable ontology modules that aims to provide coverage of all aspects of the infectious disease domain, including biomedical research, clinical care, and public health. IDO Core is designed to be a disease and pathogen neutral ontology, covering just those types of entities and relations that are relevant to infectious diseases generally. IDO Core is then extended by a collection of ontology modules focusing on specific diseases and pathogens. In this paper we present applications of IDO Core within various areas of infectious disease research, together with an overview of all IDO extension ontologies and the methodology on the basis of which they are built. We also survey recent developments involving IDO, including the creation of IDO Virus; the Coronaviruses Infectious Disease Ontology (CIDO); and an extension of CIDO focused on COVID-19 (IDO-CovID-19).We also discuss how these ontologies might assist in information-driven efforts to deal with the ongoing COVID-19 pandemic, to accelerate data discovery in the early stages of future pandemics, and to promote reproducibility of infectious disease research

    The running performance profile of elite gaelic football match-play

    Get PDF
    The current study examined (a) the match running performance of Gaelic football and (b) the decrement in match running performance with respect to position. Global positioning satellite system technologies (4-Hz; VX Sport) were used with 3 elite intercounty teams across 3 full seasons with 250 full game data sets collected. Game movements were classified according to game actions and distance covered across speed zone thresholds (total distance [TD], high-speed running distance [HSRD; ≥17 km·h], sprint distance [SD; ≥22 km·h]; accelerations [n]; peak speed [km·h]). The influence of running performance in each quarter on the subsequent quarter was analyzed across all positional roles. The mean (±SD) TD and HSRD covered during the game were 8,889 ± 1,448 m and 1,596 ± 594 m, respectively. Results show a temporal profile for TD with reductions in the second (-4.1%), third (-5.9%) and fourth (-3.8%) quarters, respectively. There was a significant reduction in HSRD in the second (-8.8%), third (-15.9%), and fourth (-19.8%) quarters when compared to the first quarter (p \u3c 0.001). Positional differences were observed for distance-based measures with the middle 3 positions (half-back, midfield, and half-forward) completing the highest running performances. These positions also showed increased decrements in TD and HSRD and SD across quarters. The current data indicate a reduction in exercise intensity over the duration of elite Gaelic football match-play. It is unclear if this reduction is because of fatigue, pacing, contextual factors, or nutritional strategies employed by players

    A Corticothalamic Switch: Controlling the Thalamus with Dynamic Synapses

    Get PDF
    SummaryCorticothalamic neurons provide massive input to the thalamus. This top-down projection may allow the cortex to regulate sensory processing by modulating the excitability of thalamic cells. Layer 6 corticothalamic neurons monosynaptically excite thalamocortical cells, but also indirectly inhibit them by driving inhibitory cells of the thalamic reticular nucleus. Whether corticothalamic activity generally suppresses or excites the thalamus remains unclear. Here we show that the corticothalamic influence is dynamic, with the excitatory-inhibitory balance shifting in an activity-dependent fashion. During low-frequency activity, corticothalamic effects are mainly suppressive, whereas higher-frequency activity (even a short bout of gamma frequency oscillations) converts the corticothalamic influence to enhancement. The mechanism of this switching depends on distinct forms of short-term synaptic plasticity across multiple corticothalamic circuit components. Our results reveal an activity-dependent mechanism by which corticothalamic neurons can bidirectionally switch the excitability and sensory throughput of the thalamus, possibly to meet changing behavioral demands
    • …
    corecore