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ABSTRACT 

A Simulation Study of One and Two 

Level Hierarchical Communication Networks 

Barry Shane, B.S. , Northeastern University 

M. B.A. , Northeastern University 

Directed by: Dr. Frederic Finch 

Research employing the Communication Network Experiment 

paradigm (CNE) has produced inconsistent results over the last 

20 years. Some of the contradictory as well as inconclusive results 

are in regard to the dependent variable--productivity or solution 

rate. These findings may have been the result of problem solving 

sessions of short duration (60 problems or less). Group problem 

solving in CNE has been recently shown to exhibit a substantial 

transition period marked by an acceleration in the solution rate 

leading to a steady state. The present study was designed in anti- 
• J 

cipation that these inconsistent findings could be resolved by including 

individual learning and reinforcement into the CNE paradigm during 

long periods of problem solving. 

This study has two objectives: 

• * p ' v % 

(1) to develop a computer simulation model of the communi¬ 

cation network experiment 

(2) to investigate specific hypotheses, previously not 

investigated, concerning the effect of learning and 

reinforcement upon the productivity of a network. 
t 

Productivity was measured by the number of messages 

required to complete the Bavelas-Leavitt task. 
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A four-man Communication Network Experiment model was 

constructed to examine, (1) the transition states in learning and 

(2) productivity for a Circle and an All-Channel network. The 

major features of the model were: 

(1) A set of messages and channels which: 

(a) lead to a solution of the problem 

(b) influence behavior patterns 

i • ' 

(2) A set of rules which: 

(a) provided for probabilistic changes of messages 

and channels 

(b) permit non-optimal performance but require 

logical consistency in problem solution 

(c) identify 'good' behavior and tend to have it 

repeated 

(d) allow certain kinds of effective behavior to 

develop over the course of a number of trials 

by ’recognizing' both desirable and undesirable 

behavior. 

(3) A set of initial program parameters which are altered 

during the course of the simulation. 

Based on the following three step validation procedure, the 

simulation model appeared to be a reasonable representation of 

subjects in CNE. The first step indicated the model's reliability. 

Reliability is defined as the ability of the model to produce consistent 

time-series regardless of the.sequence of pseudo-random numbers 

used to drive the model. Model reliability was determined by 

comparing the estimates of the regression equation for the original 

and replicated runs along with the coefficients of determination. 
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Two more validation steps required a comparison of the data with 

the results of the Burgess long term CNE laboratory study for 

'goodness of fit1. A comparison was made between the simulated 

and laboratory data of a Circle network for overall fit and to 

establish similarities in the breaks or onset of the transition 

states of learning. 

The effects of learning and reinforcement on productivity in 

problemsolving were assessed for the All-Channel network (a two 

level hierarchy) and then compared with a Circle network (a one 

level hierarchy). The findings are: 

„ (1) In the long run, productivity measured by number of 

messages required for solution for both Circle and 

All-Channel networks is similar. 

(2) Solution rates measured by solutions per trial are 

similar for Circle and All-Channel networks, in the 

long run. 

(3) The fewer the levels of hierarchical structure, the 

sooner an optimal rate of productivity may be reached. 

All-Channel networks reach a steady state solution 

rate in fewer cumulative solutions than Circle networks. 

In general, the findings demonstrated the importance of 

including learning and reinforcement into the CNE paradigm. 

Differences may have existed in the CNE of short duration. However, 

these may not have been significant differences when compared to 

cumulative experiences of longer duration. As the findings of this 

study and data from individual psychology suggest, problem solving 
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is composed of transition states in learning. Therefore, rather 

than being concerned with tests of significance and employing large 

samples for short periods of time, a more effective strategy 

would seem to be to examine smaller samples for a relatively 

extended period of time. 



CHAPTER I 

INTRODUCTION 

Background 

Substantial effort has been exerted by social psychologists to 
i 

, reduce the interplay of individuals to a manageable level for theori- 

, zing. Considerable emphasis has been placed upon designing 

experimental tasks and settings simple enough to permit observation 

of groups processes, yet not so simple that the essence of group 

interaction is dissipated. 

The associated studies of group dynamics and sociometric 

analysis have proceeded along two avenues. First, some degree of 

success has been achieved by reducing the interplay of individuals to 

a single event, similar to the Asch experiment. This one observable 

act, however, provides scant substance for theorizing. Second, the 

more involved methods of experimenting with group processes have 

been so thick in interaction that only a few variables can be reduced 

to quantifiable form and analyzed. 

The communication network experiment has been one of the 
/ 

compromises to these approaches. By foregoing the detail of face- 

to-face interaction and exposing the behavior of group members in 

a series of observable acts, sufficient variables are controlled to 

permit a systematic analysis of quantifiable data. Concern for the 

I 
effects of different patterns of interaction upon group processes led 

m 
* ' • * 

B • * ■ • . * 

. 

.* • 
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to the initial interest in the Communication Network Experiments 

(CNE). These experiments were one strategy for the study of group 

structures under controlled conditions. 

The primary purpose of this study is to contribute to the inte¬ 

gration of these two approaches. This will be achieved by developing 

a computer simulation model of CNE and investigating a general 

hypothesis concerning the effects of learning and reinforcement 

upon network productivity. 

Statement of the Original CNE Problem. Bavelas (1950) 

originally defined the problem as follows: 

Imposed patterns of communication may determine cer¬ 

tain aspects of group processes. This raises the question 

of how a fixed communication pattern may affect the 

work life of a group. Do certain patterns have structural 

properties which may limit group performance? May it 

be that several communication patterns are all logically 

adequate for the successful completion of a specified task? 

Or will one result in significantly better performance than 

anothe r? 

With these questions Bavelas developed the experimental pro¬ 

cedures, now standard in CNE, which have been systematically built 

upon in an attempt to construct a theoretical framework and subject 

it to empirical tests. 

Due to the formal theoretical emphasis of Bavelas1 original 

work and the ensuing popularity of his experimental technique, many 

investigators have been disappointed that the research findings on 
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communication networks have not led to a rigorous theory of group 

structure. 

Davis (1969) noted that although the experimental method has 

enabled researchers to use observable individual behaviors as the 

foundation for cumulative empirical relationships, the amount of 

confusion which has occurred in the study of networks is surprising. 

The lack of unifying concepts seems to warrant further elemental 

research. Burgess (1968) observed that groups appear to organize 

in specific schemes and perform at speeds independent of com¬ 

munication freedom and of the network in which the group is operating. 

Several criticisms may be leveled against most CNE to date. 

Two are of primary concern. First, data from psychology have 

indicated that during individual learning there are three distinct 

phases--an initial transition period, a period of acceleration in 

response rates, and then a 'steady state' in response rates. Once 
- < / 

this phase is reached, behavior remains typically stable for long 

periods. To date, only one of the CNE was designed or conducted in 

such a way that a steady state could be achieved. Consequently, 

groups may have been either in the process of organizing or searching 

for the optimal sequences of messages when the experiments were 

terminated. If the data from individual psychology suggest that 
• % p 

these transition states are the rule rather than the exception, the 

research strategy for CNE should be reversed. Rather than manipulate 
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large samples for short time periods, smaller samples should be 

examined for a longer duration to determine the .effects of learning. 

Also, previous studies failed to include a basic property of social 

interaction behavioral consequences of either positive or negative 

reinforcement. This seems particularly critical since the literature 

(Staats and Staats, 1964) indicates that most behavior, or change in 

behavior, is predicted upon environmental consequences perceived 

or imagined. 

To date CNE have been marked by inconclusive and inconsistent 

findings. (Collins and Raven, 1969) Reexamining the last three 

questions posed originally by Bavelas, one can still not find satis¬ 

factory explanations for what may be missing variables or relation¬ 

ships. 

Previous Research in CNE. The Bavelas-Leavitt (1950-1951) 

experiment has been followed by a large number of studies employing 

the communication network paradigm. The voluminous research 

has been collected and synthesized in three comprehensive reviews. 

The first is by Glanser and Glazer (1961) who note that (p. 13) 

"The area has been worked not only exhaustively but to 

exhaustion. After a promising start, the approach has 

led to many conflicting results that resist any neat order. " 

The paradigm is outlined in detail in Chapter Two. 
1 
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The second review by Marvin Shaw (1964), a prolific contributor to 

the CNE literature, also attempts to order the seemingly conflicting 

results. The last review by Collins and Raven (1969), and perhaps 

the most comprehensive, summarized the research in tableau form 

categorizing the studies by task, network, independent and dependent 

variables, and the findings. 

The results have been classified on several measures of per¬ 

formance--time, number of errors, number of messages to complete 

the task, etc. Although there are inconsistencies on any one measure, 

it is generally concluded that Wheel, Y, Chain, and Circle constitute 

an order of decreasing performance (Collins and Raven, 1969). 

The first attempts to find consistent relationships among the 

/ 

variables thereby establishing a basis for theorizing, led to the use 

of structural indices. (Luce, Macy, Hay, 1954; Flament, 1963; 

Glanser and Glazner, 1959; and Shaw, 1964). Bavelas introduced 

the concept of network centrality or distance between positions, 

and then also suggested relative centrality. The latter correlates 

rather well with position performance and personal reactions to 

one's position in the network (Davis, 1969). But network centrality 

has not been as useful in predicting group-level variables such as 

performance. There have been other suggestions, a 'peripherality 

index' by Leavitt and an 'independence and saturation index' by Shaw, 

neither of which has satisfactorily improved the contribution to a 
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theoretical base. In summary, no single index has been employed 

to explain structural characteristics for all the dependent variables 

that structure seems to influence. These indices have all been 

unsatisfactory in explaining the differences in performance between 

the various networks. 

Collins and Raven note that "Leavitt (1951) concluded that a 

five person Wheel network had a lower average time on correct 

trials than did a five person circle. But Shaw (.1954), with four 

person groups, reported the opposite, that circles were somewhat 

faster than wheels. " 

Contrary to Shaw's findings that the more centralized networks 

are faster, Burgess (1968) found that a steady solution rate is 

reached after prolonged experience in both centralized and decen¬ 

tralized networks. 

Recently Collins and Raven (1969) concluded their review of the 

CNE literature by stating, "It is almost impossible to make a simple 

generalization about any variable without finding at least one study 

to contradict the generalization. ..." 

Clearly, 'something happens' differently in different networks, 

and group performance is frequently influenced in a strong way. 
r 

Centrality, saturation, independence, and .the other concepts aid in 

ordering these phenomena, but do not constitute a viable theory. 
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The key to the development of an orderly understanding may 

2 
stem from emphasizing the role of a network's operating structure, 

a notion reintroduced by Davis (1969). Guetzkow and Simon (1955) 

originally pointed out that given the opportunity to develop maximally 

efficient operating structures --there is no difference in the limiting 

times for task performance between unrestricted or decentralized 

networks (All-Channel) and centralized or restricted networks 

(Wheel and Circle). 

This approach may not be as fruitful as Davis suggests. 

Marshall (1966) points out in his experience with the Cohen (1962) 

experiments that conversations with subjects after their sessions 

indicated that many of the subjects did not fully and accurately com¬ 

prehend: (1) the network they were in (2) the optimal behavior for 

the network and (3) the exact nature of their own role in the network 

and the effects of their own activities on the development of the 

organization. 

These comments support Shaw's argument that the evidence 

presented by Guetzkow et al. and used by Mulder (1959) merely 

shows that efficiency and organization are correlated. In fact Schein, 

(1958), in a series of experiments dealing with this question, found 

efficiency and organization perfectly correlated at the end of his 

2 
A network's operating structure is considered to be defined by the 

available channels open to each participant of that network. 
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experiment. However, achievement of efficiency developed earlier 

than organization. Therefore, Shaw's basic criticism stands: the 

support for Guetzkow hypothesis is basically correlated in nature. 

More recently, Burgess (1968) integrated individual learning 

theory into a GNE paradigm. By specifically including learning con¬ 

cepts into his design, he found that Circle and Wheel networks can 

i 

reach a similar steady state of performance. Although trial lengths 

for these two networks were significantly different (200-300 for 

Wheels and 500-600 for Circles) the nature of these structures 

became apparent. Performance of a network is a function of each 

member's ability to adapt to structures or environments of varying 

complexity. This adaption was achieved by having each member 

learn his role in the task-structure through information feedback 

and reinforcement provided through the experimental process. 

Resolution of some of the preceding disparate findings may be 

achieved by employing a long-term study using the computer simu¬ 

lation approach. 

Simulation. The use of computer simulation models of human 

behavior has been extensive during the last two decades (Dutton and 

Starbuck, 1971). Their use, however, has led to little systematic 

effort to integrate findings within a general framework. Bales 

(1959), Abelson (1968) and others have hailed the simulation technique 

as a welcome tool for further investigation of psycho - social phenomena. 
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Dutton and Starbuck pose perhaps the major advantage for 

simulation of behavior as follows: 

Simulation imposes a modest degree of logical rigor on 

the theorist, and encourages him to analyze the temporal 

structure of the modeled processes. Verbal and mathe¬ 

matical theories are not always complete. Because com¬ 

puting machines operate sequentially, a well defined 

temporal sequence is inherent in every operating program 

and the model builder is forced to specify this sequence. 

He must at least consider which operations precede which 

operations, and in so doing, takes a first step toward casual 

identification. 

Therefore the integration of behavioral processes required for a 

process to be simulated demands deliberate and careful construction 

to synthesize past empiricism. 

i» • - • 

The phrase, computer simulation, requires some exposition. 

According to Dutton (1971) simulation can be defined as a duplication 

of a system or activity, that is, the essential characteristics of the 

system. It should be emphasized that the construction of a model 

need not take the form of, or mirror, an actual process. Inevitably 

a model will include some simplifying assumptions that are at 

variance with reality. However, some of the essential relationships 

which exist between the elements of the real system should be 

included. 

Human behavior of individual system elements may be thoroughly 

understood, but the interrelationships of the elements, and con¬ 

sequently the behavior of the system or process as a whole, may not 
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be. Here a simulation can determine and highlight the behavior of 

the total system in a deductive fashion. 

i 

There are several reasons why the proposed research will 

take the form of a computer simulation model. 

1. If sufficient realism can be obtained in sets of relatively 

simple equations, analytical models are, in general, less time- 

consuming and can more easily produce optimal results than can 

simulations (Dutton and Briggs, 1971). The communication network 

experiment possesses stochatic components which exhibit a feedback 

property.. It follows that analytical techniques would be very cumber¬ 

some with this paradigm. 

/ 

2. A long-term study has been suggested by the need for the 

inclusion of transition states of learning. Swanson (1953) studied 

groups that differed in knowledge of task and amount of prior 

experience working together. Groups that had worked together 

previously on a task exceeded other groups in success of task per¬ 

formance and mutual satisfaction. 

Most studies are not of long duration and present only a snap¬ 

shot of continual behavioral processes within groups. Weick (1969) 

states that this depicts a static view of organizations because 

mechanisms associated with-proce sse s of change, development, 

restructuring, and fluidity are not highlighted. The simulation 

strategy offers more acceptable methods to overcome this criticism, 



because it can deal with feedback properties, stochastic elements in 

the process, and changes which occur throughout a specified time 

) ’ 

period. 

3. Reliable data are needed for generating and testing useful 

theories. The use of multiple techniques which are imperfect in 

different ways, can resolve the generation of ambiguous data. When 

many of them are applied, the imperfections in each tend to check 

and/or amplify one another. Simulation is one of these possible 

techniques. 

4. A theoretical model may have a number of gaps in it which 

are more readily perceived in the course of constructing a simulation. 

Certainly that appears to be evident in the present state of the cur¬ 

rent theory. 

5. By constructing a simulation model in this area, one is 

forced to synthesize existing propositions which may otherwise remain 

disparate verbal or mathematical statements. Because many findings 

have to be incorporated to achieve a mathematical model for a simu¬ 

lation, the rigor of this approach tends to lend formalism to 

theoretical statements. 

Previous CNE simulation studies. There have been previous 

simulation studies in the CNE. McWhinney (1964) has written a com¬ 

puter program to simulate communication network behavior, but was 

apparently not completely successful. His work involved a model 
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with very few parameters and was not intended to provide the same 

sort of results as the proposed model. McWhinney tested the effects 

of 'local rationality1 on self-organization of communication patterns. 

His lack of success in experimentation may be traced to the exclusion 

of some phenomena in group development, one of which was learning. 

Marshall (1966) attempted to simulate, with a more complex 

set of parameters, the results of CNE conducted by Cohen (1962). 

His model was relatively successful in reproducing those data, but 

was not adaptable to slight changes in the network with which he 

validated his model. 

The model to be proposed for experimentation differs from the 

previous attempts in two ways: 

1. By basing the input parameters on data from a wider variety 

of networks, the model can be made more general in nature so as to 

examine more networks. Within this study, two dichotomous networks 

are investigated; a one level hierarchy, the Circle and a two level 

hierarchy, the All-Channel network. 

2. Inclusion of feedback and reinforcement in individual lear¬ 

ning should permit a closer approximation to many possible outcomes. 

The Nature of This Research Study 

Problem Formulation. The problem examined in this study 

was formulated with an exploratory general hypothesis; will the 
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introduction of learning and reinforcement into the CNE paradigm 

account for differences between the networks previously mentioned? 

As a result of this hypothesis, two objectives were delineated. 

(1) To develop a computer simulation of the communication 

network experiment. 

(2) To investigate specific hypotheses concerning the effect 

of learning and reinforcement upon the productivity of 

a network previously not investigated. 

The first objective requires the behavior in dichotomous net¬ 

works, not previously examined over long periods of problem solving, 

to be simulated. ' The model used for this simulation should be con- 

. • » * 

sidered as a vehicle which will be composed of, and cause existing 

propositions from learning theory, communication theory, and the 

CNE to interact. 

There is evidence (McWhinney, 1964) that interaction or com¬ 

munication in this type of experimental setting has a large rational 

component. Furthermore, the variety of approaches taken by sub¬ 

jects to organize their group to perform effectively is small and, 

for the most part, well-defined. Therefore, according to the rationale 

for an individual learning process, the design philosophy to be adopted 

is to construct a program representing the details of the structural 

aspects for the networks and then separately to construct a simu¬ 

lation of the individual's behavior. The simulated subjects can then 

be placed in any desired network and runs can be set for any number 

of trials. 
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This research effort uses the individual member of the CNE as 

the basic unit of the system and attempts to develop a simulation 

model of the CNE by synthesizing data gathered by-social scientists. 

The model is not constructed within any specific socio-psychological 

theory. The simulation, then, should be viewed as an algorithm which 

produces movement of a system consonant with empirical findings. 

(See Levin, 1970; Marshall, 1966; and Roby and Budrose, 1965. ) 

\ 

The second part of the study will involve experimentation on 

the model and generation and analysis of the data. Replications of 

experimental conditions will be made to accommodate the stochastic 

nature of the interacting variables. By constructing a model of the 

CNE which includes individual learning (in the form of feedback and 

reinforcement), this investigation is designed in the anticipation 

that the output or results of the model will resolve some of the 

previous inconsistent findings. 

Two of Bavelas' original questions will be posed: 

T. Will various networks reach an equal rate of productivity? 
• t 

. 2. Why will some groups confronted with a task develop more 

or less rapidly in a productive fashion and in some cases fail to find 

systematic behavior to accomplish the task efficiently? 

The first question is suggested by Burgess' work (1968) 

indicating the eventual attainment of a steady state for problem 



Other solving by two different networks (Circles and Wheels), 

frequently used networks may also exhibit this type of behavior. If 

learning and reinforcement will produce this similar effect in other 

networks, the inconsistent results previously recorded may be 

explained by examination of the transitory state in which other experi¬ 

ments terminated (25 to 60 trials). 

The basis for the second question stems from the indirect 

implication that individual learning rates are not the same for each 

network. Due to the complexity of stimuli (paired comparisons) and 

their combinations which must be performed by each member, the 

absorption rate of 'better channels' may account for differences in 

4 
cumulative solutions over time for each structure. Stated simply, 

it is not a matter of knowing the structure, but rather how many 

comparisons of behavior can be made and retained, so that an 

individual can identify those sequences which are most productive. 

It would appear that faced with more centralized CN these comparisons 

would be less complex, thereby explaining the rapid development of 

optimal or near-optimal productivity for Wheel nets. 

If a learning model can produce long-term data similar to 

human subjects, it will then form a basis for theorizing on the 

crucial relationships within the CNE. 

See Figure 1-1 for a schematic explanation of all network discussed 

in this study. 

^Cumulative solutions as used in this study refer to successful task 

completions which are solved up to a point in time. 
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The directions for this approach have been suggested by- 

several researchers (Hare, 1962; Guetzkow k Dill, 1957; Stogdill, 

1959; and McWhinney, 1964). 

A brief description of the model is now presented which includes 

the major attributes of the individual members, the output and 

independent variables and the reasons for their selection. 

A hypothetical network was constructed. The network con¬ 

sisted of four simulated members. Each member of the network was 

represented by a specific set of behavioral attributes. The behavioral 
» 

attributes were identical for each member at the beginning of each 

simulated run. The value of these attributes was then modified 

internally and varied over time. These principal characteristics 

denoting each participant in the network were the value each placed 

upon: 

(1) selection of a channel or another member to whom he 

wished to communicate 

(2) selection of a message or type of communication desired. 

Over time, both these attributes changed as a function of prior 

task success. A probabilistic reinforcement component was included 

which increased the liklihood of maintaining and readopting behaviors 

(selection of both channel and message) when they occurred, which 

reduced the number of communications required for group solution. 

Conversely, this likelihood was reduced when the adoption of behavior, 
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or selections of channels or messages, was deleterious to the group's 

solution time. 

The output, or dependent variable, under investigation is pro¬ 

ductivity. The job, or behavior, for each simulated member of the 

network was to send a sequence of messages to other participants 

in the network such that a solution was reached by everyone. Pro- 
- % 

ductivity, then, was measured by the solution rate, or time to 

solution, achieved by a network. Time units were recorded as the 

equivalent of the number of messages sent, as in the experiments by 

Christie, Luceand Macy (1952). This measure also permits an 

evaluation of accuracy for the networks. 

The total number of messages, or time units, required to 

complete the group, or network, task constituted a trial. Within 

each trial a sequence of messages used by each member was recorded 

in his 'memory'. Learning and employing shorter sequences of 

messages constituted the primary work of each simulated subject. 

In the CNE, which included consequences of feedback, there 

seems little doubt that feedback often improves performance--as 

was early demonstrated by Leavitt and Mueller (1951). Therefore 

feedback was included at the end of each trial by permitting com¬ 

parisons of current behavior to past successes (shorter sequences) 

for each member. This procedure is representative of human 

behavior in these experiments Cohen (1962). 
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At the completion of each trial, the number of total messages 

(time units) was recorded. These data should indicate over time the 

transition states on the learning process. The independent variable, 

therefore, should have been but was not time, or time spent attem¬ 

pting to solve or complete the repetitive task of the CNE paradigm. 

It was decided to use cumulative solutions rather than time in this 

study since the crucial variable affecting task performance or 

productivity obviously is experience in solving tasks, rather than 

experience in simply being present in an experimental environment. 

The path of cumulative solutions achieved by the networks was 

selected as the independent variable for the simulation. 

The functional relationship examined was: what effects are 
. ' • v . 

produced by cumulative solutions (as they occur through time) on 

the task-solution rate of a communication network. 

The wide-spread use of a productivity measure in nearly all 

previous CNE studies suggested the need for comparing solution 

rates or productivity between various networks and to examine the 

results of long run learning effects of these solution rates between 

networks. 

Data Collection. The second step in the research required col¬ 

lecting and assembling data from previous findings such that a, 

mathematically logical model could be constructed. Model construc¬ 

tion consisted of specifying the components of the process, and both 
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their relationships and interrelationships. The prime data sources 

were experimental studies, a significant portion of which were in the 

CNE literature. Unfortunately, the quality of the data varied. The 

necessary mathematical relationships between variables which are 

required in a simulation were seldom developed in this literature. 

The qualitative data used, therefore, required some transformation 

into mathematical terms. Moreover, transformation of data for 

model construction poses some problems for model fidelity and may 

restrict interpretation. The components and their relationships are 

discussed in Chapter Three. 

Computer Programming. The first stage of the model's con¬ 

struction was in prose. This determined the sequencing of events 

along with continual correction aligning elemental relationships. The 

model was factored into smaller modules, then diagramed into a 

flow chart. Each action which occurred in the model was placed in 

block form, with each block representing one computer demand. 

Prior to writing the program from the flow chart, its internal con¬ 

sistency was examined. Checking the model at both the prose and 

flow chart stages is a necessary strategy. If the fidelity of the 

model is examined only after the program becomes operational on 

the computer, logic and coding errors become difficult to correct. 

The computer program was written in Fortran IV on a CDC 3300 

computer. After the coding process, the program was debugged by 
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modules, or blocks, to ensure the accuracy of the logical flow. In 

summary, the construction of the computer program involved the 

following sequence: 

(1) prose 

(2) flow chart 

(3) computer coding 

(4) debugging. 

Independent and Dependent Variables. The experiment included 

one independent variable, cumulative solutions over time, which was 

not varied by the experimenter. Rather, its effect on productivity 

or solution rate was analyzed for two different communication net¬ 

works. The networks used for this analysis were: 

5 
(1) Circle network 

(2) All-Channel network 

The dependent variable in this study was: 

(1) Rate of solution for the CNE task 

The analysis required that relationships between these variables 

be established for each network. Since no previous data existed for 

the time period over which cumulative solutions were permitted 

during the simulated runs, estimates of experimental error were 

generated by replicating the results for each network six times. Each 

Exposition and constraints regarding the operation of these networks 

will be discussed in Chapter Two. 

5 
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simulation run can be regarded, then, as a single statistical obser¬ 

vation. 

Data Analysis. After the model was constructed, the experi¬ 

mentation was conducted. A least squares regression technique was 

used to examine the relationship between variables. Since simula¬ 

tion produces a set of time series, the analysis of such data presented 

its own unique set of problems. Many conventional statistical methods 

are difficult to apply because it can not be assumed that successive 

observations are statistically independent. A sample of data ordered 

in time is not the same as a random sample drawn from a population, 

and cannot be treated in the same fashion for analysis. In this study 

the regression technique was used to describe the functional relation¬ 

ship of productivity to cumulative solutions experience in one- and 

two-level hierarchical networks. Also, the purpose for experimen¬ 

tation is to evaluate the relationships of the variables through transition 

states in learning. Curvilinear analysis was required to describe the 

behavior of various networks in their solution rates over a continuous 

time period. Regression techniques are concerned primarily with 

the derivation of an equation that describes mathematically the man¬ 

ner in which the variables vary jointly, or covary. Examinations 

were made of these equations such that differences between networks 

could be described. 
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Validation and Experimentation. The final steps were the 

validation of the model and analysis of the simulated data. The 

verification, or validation, of models is, perhaps, still the most 

difficult methodological problem in the process of the computer simu¬ 

lation approach. 'Van Horn (1968, p. 2) defines validation as, "the 

process of building an acceptable level of confidence that an inference 

about a simulated process is a correct or valid inference for the 

actual process. 11 Validation is a problem. 

In this study, the positive economics stage of the validation 

procedure required comparing the output from the simulation model 

of the communication network with the output of the Burgess (1968) 

laboratory experiments. Burgess conducted a study to determine 

the effects of long term practice in the CNE pardigm on the productivity 

and eventual attainment of a steady state J of performance for two 
* 

communication networks, the Wheel and Circle. These networks 
» ' 

permitted communication only between members as indicated by the 

direction of the arrows. 

The Burgess long-term experiments provided a benchmark 

against which the results of this simulation were constrasted. His 

study included fifteen groups of twenty subjects. Each group was 

A steady state was defined as the maintenance of a level of accom¬ 

plishment or the maintenance of a given rate of increase in 

accomplishment. The use of this definition was also employed in 

this study. 

6 
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composed of five four-man communication networks for a total of 

seventy-five networks. Each of the networks was required to com¬ 

plete 800 problems or tasks in the CNE paradigm. The reason for 

this many repetitions, contrary to previous studies which ran for 

only 25 to 60 repetitions, was Burgess* hypothesis that learning 

would occur in a longer time period which might narrow the dif¬ 

ference in task solution rates between the above-mentioned networks. 

/ 

The concept of learning was adopted in his experiments by including 

both positive and negative reinforcements for individual behavior. 

By comparing task solution rates and attainment of steady state 

levels of productivity, Burgess was able to draw inferences between 

the two networks used in the study and other preceding his. The 

strategy selected in analyzing the data called for producing a time 

path for the task solution rate over an equivalent number of trials 

or cumulative solutions . The output of the simulation model required 

the same 800 completed tasks for comparison. 

Even if the results are comparable between the Burgess and 

other studies, this does not imply that the inferences drawn for 

another network simulated by the model are valid. Agreement with 

the Burgess experiments, however, could contribute to the face 

validity of the model. 

Another technique was used to partially validate the model. 

Recall that the analysis required a repetition of the simulated output 
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of the networks. This replication, in conjunction with fitting the 
* i 

• t 

data to time series curves, provided an opportunity to test the 

model's reliability (reliability is defined as the ability of the model 

to produce consistent time paths for the output variable regardless 

of the sequence of pseudo-random numbers used to drive the model) 

This required comparing the functions produced by the original and 

replicated runs using standard statistical tests. The functions pro¬ 

duced should be sufficiently similar to each other to assure equiva¬ 

lence. 

In summary, validation is not an all-or-nothing proposition. 

Van Horn (1971) pointed out that the degree of confidence in the 
✓ 

verification of the model is left to the subjective judgment of the 

researcher. To accomplish this, a multi-stage validation technique 

was followed including rationalism, empiricism, and positive 

economics. 

Limitations. This study has limitations in three areas; the 

variables and networks examined, the existing empirical findings 

related to the process, and the degree of validation which could be 

achieved. First, only one independent variable, successful cumu¬ 

lative solutions over time, was examined in this study. Factors 

such as morale, leadership emergence, organizational sequences, 

and group style (cooperative versus competitive) were excluded 

from the networks. These factors obviously affect a real group's 
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output variable, task solution rate. The absence of these factors 

imposes limits on generalizing from the findings. Additionally, 

only two four-man communication networks were investigated which 

limit inferences drawn about other communication structures. 

Second, a review of the literature, especially in the communi¬ 

cation networks area (Collins and Raven, 1969), revealed some 

major inconsistencies in both terminology and mathematical indices. 

It was, however, usually possible to locate several consistent 

studies and therefore the model's components were based on these 

studies. The two previous attempts to simulate communication net¬ 

works (McWhinney, 1964 and Marshall, 1966) assisted in recognizing 

the limitations of employing data from only one or two empirical 

works. Further problems in estimating values for the model's com¬ 

ponents were encountered by the lack of appropriate mathematical 

relations which are necessary in simulation studies. The majority 

of the communication network literature only reports the effects of 

independent variables on dependent variables in a verbal manner with 

little mathematical explanation of processes. In every case, the 

verbal explanations were used to develop linear relationships between 

the variables in the model. No higher order relationships were 

established. 

Inconsistencies of data and unclear functional relationships 

needed for the model detract some of its face-validity. Although 
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this problem exists for many simulations, it is particularly acute 

in socio-psychological simulations. 

Lastly, validation problems impose limitations on the study. 

To use the simulated system to make statements or draw inferences 

about the real system, the model must adequately represent the 

real system. The procedures that have been suggested are generally 

multi-stage verification processes which should support the model's 

fidelity. The comparison of time paths and functional relationships 

* 
with the data compiled by Burgess (1968) is another attempt at 

partial validation. To the degree that validity can be established for 

one set of conditions produced by the model, caution must be 

exercised when establishing the virtue of other variations of the model. 

Essentially, then, these validation procedures are null tests. A 

model would be suspect if it failed these tests, but no strong state¬ 

ments can be made for a model which passes. 

Summary. This study has two objectives. They are a refine- 

ment of the general hypothesis that learning and reinforcement may 

account for and explain differences in task productivity between the 

networks mentioned. 

(1) Construction of a simulation model of a communication . 

network. 

(2) The testing of specific hypotheses regarding the effect of 

cumulative experience in task solving on the solution rates 

for selected communication networks. 



A model of the communication network was constructed which 

builds upon both the communication network literature and group 

dynamics. The network consists of four-man groups. By using 

regression analysis techniques, the effects of task experience on 

task solution rate is examined. Finally, the results and conclusions 

from these analysis are presented. 

In Chapter Two, an overview of the model is presented with 

an explanation of the paradigm used in CNE. A discussion of the 

model's elements, the related research and relationships developed 

are presented in Chapter Three. Chapter Four is the methodology 

section. The reasons for the use of regression analysis are offered. 

The results of the analysis and relationships of the output data are 

discussed in Chapter Five. The study is summarized and the con¬ 

clusions are presented in Chapter Six. 



CHAPTER II 

AN OVERVIEW OF THE MODEL 

• Introduction 

This chapter presents an overview of the model of the com¬ 

munication network experiment. Its purpose is to provide an 

integrating framework within which the relevant research presented 

in Chapter Three can be examined. First, the next section presents 

the paradigm, or task employed, in the networks and discusses its 

use in other experiments. Then, the behavior of the model is traced 

through time. 

Nature of the Task. In the Bavelasr original experiment, sub¬ 

jects were seated about a circular table, separated by vertical 

partitions which prevented face-to-face contact. The center post to 

which the partitions were connected contained slots which could be 

opened and closed by the experimenter. This arrangement permitted 

the subjects to communicate, via written messages, only through thes 

channels selected beforehand by the investigator. Some of the 

structures explored by Leavitt were the Circle, Wheel and Chain 

networks. See Figure 1-1. From a set of six symbols (asterisk, 

square, etc. ) each subject was given a. set of five symbols. The 

lists were constructed such that only one symbol appeared on all the 

subject’s lists. The assigned task was to discover the common 
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symbol, and then relay this information to every member of the 

network. Each such problem and its solution were considered a 

trial, and groups were run for several trials. 
/ 

Although a number of similar tasks and variations have been 

employed in subsequent research, nearly all bear a resemblance to 

Bavelas-Leavitt task. All the members of the group must participate 

to complete the task, in that each possesses a vital portion of the 

solution and each is required to know the final answer. 

After the initial experimentation, the popularity of the network 

paradigm among researchers resulted in some inconsistent findings. 

In an attempt to clarify some of the inconsistencies within the CNE 

findings on productivity, Burgess (1968) classified two types of 

tasks which had been used by researchers in this area. He labeled 

the above discussed first type the 'simple' problem and the second 

type 'complex' problem. The latter referred to a variety of 

arithmetic calculations. 

The complex problem required mathematical calculations by 

some or all of the network members. By classifying previous network 

Complex problems are similar to the following: A company is moving 

from one building to another. It must move: (a) chairs, (b) desks, 

and (c) typewriters. How many trucks are needed to make the move 

in one trip? For a three member group, six items of information 

would be needed to solve the problem and these would be divided 

equally to all members. For example, the company owns 12 desks, 

48 chairs and twelve typewriters and one truck load can take 12 

typerwiters, or 3 desks, or 25 chairs. 
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experiments using this simple taxonomy, Burgess (1968, p. 325) 

was able to remove some of the contradictions concerning which net¬ 

work was more productive for the different tasks. Table 2-1 is a 

compendium of these findings for the different tasks by Burgess 

(1965). 

For the 'simple' task seven out of thirteen studies reported that 

the Wheel network produced the highest solution rate. The Wheel 

is a network in which organizational problems are kept to a minimum. 

All information is directed toward the individual occupying the cen¬ 

tral position. Typically, this individual, upon receiving the infor¬ 

mation provided by the others, solves the problems and sends 

answers to the network members. However, the All-Channel network 

for the simple task was found to produce the highest rate of produc- 

i* * 
* 

tivity in three cases. The All-Channel network permits direct 

communication among all members. In three instances there were 

found to be no significant differences between these networks. 

Explanation of this seeming contradiction will be found in the con¬ 

clusions drawn from this simulation study in Chapter Five. The 

present study employed the 'simple' Leavitt-type task. 

2 
To prevent confusion in terminology for these two tasks, simple 

problems are those of pattern recognition and complex problems 

are'similar .to those of resource allocation and/or linear program¬ 

ming problems. 
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TABLE 2-1 

SYNOPSIS OF COMMUNICATION-NETWORK FINDINGS 

Group Network .solution rate 

Author Date size (in descending order) Task 

Leavitt 1951 5 Wheel (fastest trial) Si mple 

Heise and Miller 1951 3 All-channel: Wheel: Circle 

Wheel: All-channel: Circle 

Simple 

Complex 

Hirota 1953 5 No significant difference Simple 

Shaw 1954a 4 No significant difference Complex 

Shaw 1 954b 3 No significant difference 

No significant: difference 

Complex 

S i m pi e 

Guetzkow and 

Simon 

1955 5 Wheel: All-channel: Circle 

(stable nets-no signif. dif. ) 

Simple 

Shaw 1956 4 All-channel: Wheel Complex 

Shaw and 1956 4 All-channel: Wheel Complex 

Rothschild 

Guetzkow and Dill 1957 5 All-channel: Circle S i m pi e 

Shaw, Rothschild, 1957 4 All-channel: Wheel Complex 

and Strickland 

Shaw 1958 4 All-channel: Wheel Compl ex 

Mulder 1959 4 Wheel Simple 

Mulder I960 4 No significant difference 

No significant difference 

Simple 

Complex 

Mohanna and 

Argyle 

1 960 5 W heel. 

• / 

Simple 

Cohen, Bennis, 1961 5 W heel Simple 

and Wolken 

Cohen, Bennis 

and Wolken 

1 962 5 
0 

Wheel Simple 

Lawson 1 964 a 4 (NR) All-channel, Wheel: 

Circle 

(R) W hoe 1, All -channelj 

Circle 

Simple 

Lawson 1 964b 4 (NR) All-channel, Circle: 

Wheel 

(R) AH -channe 1, Ci rr !e: 

Wheel 

Complex 

NR = nonreinforced; R = reinforced. 

This table shows some of the differences in solution rates which 

have resulted from studies of a short duration. 
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General Discussion of the Model. In the following description, 

terms which should ordinarily be applied only to humans are used to 

describe the characteristics of a symbolic model of human behavior. 

This is done for convenience and clarity in presentation. Henceforth, 

the model's equivalent of a human subject will be called a "MAN". 

References to human subjects hereafter, will use the term "subjects" 

not "men". The capitalization of the word MAN is done to make it 

clear that it is the model which is under discussion, not some aspectof 

human subject's behavior. 

In experiments by Cohen (1962), Leavitt (1951), and Shaw (1954, 

1958, 1961 and 1964), subjects sent messages at will until everyone 
* 

signalled that he had the answer. The simulation program is not as 

flexible. Because of the sequential nature of the computer, sending 

messages proceeds as follows: 

(1) Each MAN selects a message to send (or decides to wait). 

(2) Each MAN chooses a permissible channel or other MAN to 

receive the message. 

(3) The messages are sent; all information vectors and matrices 

are updated and such other changes as may be required are 

made. 

The basic time unit in the simulation was that interval of time in which 

each MAN had an opportunity to send or request one message to or 

from another network member. Such an exchange of messages is 

called.a round. A sequence of rounds ultimately leads to each MAN 
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having the answer. Such a sequence is called a trial. The accom¬ 

plishment of successive trials constitutes the primary activity of 

the model's MEN. 

To proceed through these three choices the problem-solving 

behavior exhibited in the model was composed of four stages (Laughery 

and Gregg, 1962). They are: 

1. searching 

2. comparing 

3. remembering 

4. altering behaviors. 

These actions are performed by the MEN and are outlined with this 

classification. 

Searching. Searching procedures required a MAN to decide with 

whom he wished to communicate, and what the nature of that com¬ 

munication would be. 

In experiments with human subjects, a group engaged in 

fifteen or more trials for the common-symbol problem (Leavitt, 

Cohen). Shaw's groups solving complex problems sometimes ran 

only a few trials. Cohen, Bennis and Wolkon (1962) found important 

changes in network activity to occur after trial fifteen, and in some 

cases, as late as the last few trials (60 trials). It is important to 

notice here that in this artificial structure of rounds within a trial, 

a uniform activity rate is imposed on the MEN. Subjects do not 
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exhibit this uniformity except in some experiments by Christie 

(1954) in which it was arbitrarily imposed by the experimenter. 

Human subjects evidence some degree of peculiar behavior 
* * . ■ "■» 

during these experiments. They send jokes to each other, curse and 

draw pictures. Experiments which examined the content of messages 

(Guetzkow and Simon, 1955; Guetzkow and Dill, 1957; Cohen, 1962) 

found that on the whole messages could be classified in a fashion 

similar to Bales' (1968) interaction process analysis. 

The model MEN have only four possible messages to send. 

These messages are: 

(1) Data - a collection of symbols not understood to be the 

answer. 

(2) Send me your data 

(3) Send me the answer 

3 
(4) Waiting (this is not sent) 

This restricted set of messages,was used for several reasons. In 
* 

the experiments by Cohen (1962) all messages and scrap paper were 

collected and examined. His conclusions from the content analysis 

yielded the classifications used in the model. Marshall (1966) reported 

that it seemed as though subjects frequently did not respond appro¬ 

priately, if at all to more complicated messages. Also, it often 

Although the null act of waiting cannot be construed as a message, it 

will be referred to as such for the sake of clarity when discussing 

the possible actions of the MEN. 
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appeared that more complex messages did not have a great effect 

upon subject performance. He, too, suggested this classification 

of messages. 

It is easily understood, and indeed most human subjects recog¬ 

nize, that the common-symbol problem can be carried out using the 

complement of each subject's four symbols. (The model uses four 

man groups, hence a pool of five symbols. ) Using the complement 

symbol achieves a net gain in efficiency with no loss of accuracy. 

Cohen (1962) indicated that, on occasion, some groups would attempt 

to use this method. The model was constructed to operate in this 

fashion. 

Each Man, then,, had two primary sets of probabilities 

(arranged in matrices) which described his propensities for selecting 

each type of message to each other MAN in the network. The first 

matrix contained the probabilities for selecting one of the four 

actions only. Mathematically this can be expressed as follows: 

Let P(A..) = The probability of MAN j selecting action 

^ (message) i. 

i = 1, 2, 3,4 

j = 1,2,3,4 

such that 

4 
E P(A..) =1.0 

. ^ U 
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The four possible messages were: 

1 . Data. 

v 

2. Requests for data. 

3. Requests for the answer. 

4. Waiting. 

Relaying, or sending the answer, is not included in this set. Rules 

governing this behavior are explained below. 

The second matrix described the network or channels available 

to each MAN to send these messages. This can be denoted mathe¬ 

matically as follows: 

Let P(C..) = The probability of MAN j selecting channel i. 
J 

such that 

vP(C ) = 1.0forj = l,2,3,4; where P(C. .) = 0.0 

‘=1 " " .4 
when i = j 

Therefore, a MAN can use, at most, three possible channels. In a 

network where MAN 2 could not communicate to MAN 4, the proba¬ 

bilities in MAN 2's vector would be: 

for j = 2 

P(C..) = .5 

4 
In both the above matrices, the diagnals were set equal to zero. 

Also the off-diagnals were not necessarily symmetrical. 



This method permits the specification of any communication network. 

Comparing. A MAN was required to compare his current 

behavioral choices (selection of channel and message) with recent 
v i 

actions of other members, as they may have placed expectations or 

demands upon him. These comparisons were made by evaluating the 

state of three matrices which are discussed below (ANS, N, D). 

Prior to selecting either a message or a channel, a MAN had 

to be aware of his progress toward a solution. 11 is choices could be 

modified as a consequence of experience in previous rounds. Other 

than the first round of every trial, three states of nature could limit 

the selections. A MAN had to determine whether: 

(1) he had the answer 

(2) data for answers had been requested of him and by whom 

(3) the state of his information vector had changed during the 

last round. 

First, if a MAN had received the complement, symbol from 

every other network member, lie had determined the answer. II was 

then convenient to represent each MAN'S state ol information during 

5 
In this example the channels arc open in both directions. However 

this is not the case in other networks such as a Wheel. 
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a trial with a Boolean vector as follows: the vector contains a place 

for each MAN in the network and an extra place for the answer. 

When MAN j starts a problem, all vector positions are 0 (zero) 

except the jth, which is 1. The usual rules of Boolean operation 

govern subsequent acquisition of information - -as MAN j receives 

data from others, for example MAN k and MAN m the kth and mth 

places in the vector have their 0's replaced by l's. Repetition of 

data received does not subsequently change the 1 to anything else. 

Whenever a data message is received, the receiver's information 

vector is updated and checked to see if all places but the last one 

are filled. If they are, then the last one is filled automatically and 

MAN has the answer. This is the equivalent to saying that a MAN 

always knows how to get the answer and does so when he has all the 

data. In fact, human subjects are not always so intelligent and self- 

reliant. One subject in Cohen's experiments frequently sent the data 

to his neighbor for a final decision, even though he himself had all 

the data required for determining the answer. The model does not 

permit this timidity. Whenever a MAN has all the information, he 

has the answer. In fact, when a MAN is requested to send the answer, 

he does so by sending, in effect, his information vector. 

The elements of his information vector described mathematically 

as: 
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Let ANS . 
ij 

Equals 1 if MAN j receives data from MAN i; 

Equals 0 if MAN j does not receive data from 

MAN i. 

where i = 1,2, 3, 4 

j = 1,2, 3,4 

where ANS . = 1 when i = i 
U 

such that when 

1 

The interval between rounds serves for updating information vectors. 

A data message may contain only the 1 's present in a MAN'S vector 

at the beginning of a round. Data received by MAN j from MAN i 

during a round are not available for sending to MAN m in the same 

round. They may be sent the next round, though. Thus, the model 

confines message transfers during a round to previous messages 

only. 

This Boolean vector is a simplified representation of subject 
s 

performance, but corresponds to it very closely for subjects who 

v/ere 'solvers*. The person or MAN who deduces the answer instead 

of having it sent to him. Many of these subjects kept exactly the 

information contained in the program's matrix. The simulation 

program tracks this activity and can display a list of 'solvers' at the 

end of a trial. 

Another model provision for sending data was that whenever a 
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MAN sends data he sends all he has at the time. Even a casual 

observation of human subjects and their data messages bares the 

falsity of this provision, although in time subjects may have learned 

to behave in this fashion. To date, there has been insufficient 

empirical work necessary to adopt another provision. However, an 

evaluation of subsequent output indicated that this representation 

resulted in a reasonable correspondence with real7world behavior. 

Referring to data from Cohen's experiments, the number of 

messages sent on the first trials was quite high. Some were as 

many as twenty-five, most were somewhat fewer. Actually for a 

four-man Circle network, the solution can be obtained by sending 

messages for three rounds. Some groups of subjects managed to 

attain this in later trials (as did the MEN). The model, however, 

was able to produce in the range of 18 to 23 rounds for the first 

trials. Although a visual comparison was not precise (between 

4 

actual and simulated data) it did increase the confidence in the 

model's ability to represent the real process even with the imposed 

restrictions on message sending. 

r 

Once a MAN had determined the answer by examining his 

information vector, he was constrained to (1) sending only the 

answer through any available channel or (2) waiting. Initially this 

restriction was artificially imposed. Human subjects sometimes 

did not exhibit this behavior during the beginning of experimental 
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trials. However, the MEN, similar to human subjects, learned 

after successive solutions that this behavior (waiting in the model, 
• . < 

and other activities by subjects) did not improve the solution rate 

for the network. Consequently, this decision (sending the answer as 

soon as it was achieved) rule was adopted in a pattern as evidenced 

by human subjects. 

The next modification in the searching and selecting procedure 

was the identification of requests. Two of the permissible messages 

were requests for data or for the answer. Either of these might 

require an appropriate response. To identify properly and attend to 

these requests, a set of vectors was constructed to indicate (1) which 

channel had made the request and (2) which request it was. At the 

beginning of each trial all the vector positions were set at zero. If 

MAN k asked for data from MAN j, the data vector of MAN j was 

incremented by 1 in the kth position. Each element in this matrix 

then, was increased by 1 for every request received and decreased 

by 1 when that request had been responded to. Mathematically this 

can be expressed as follows: 

N .. = The number of requests from MAN i, of MAN j, 

nlJ ' for j = 1,2, 3,4 

i = 1,2,3,4 

where n = 1 is a data request 

n = 2 is an answer request 

where N .. = 0. when i = j 
mj 
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This tracking procedure is, in fact, indicative of human subjects who 

kept a running account of these requests (Cohen, 1962). Thus, net- 
K 

work members could recognize and respond to demands made upon 

them. Once a MAN wished to comply to these inquiries, then both 

his message and channel selection were constrained to the appropriate 

response and the required channel. The functional operation and 

decision rules involved in this process are discussed in Chapter 
* V 

Three. 

To eliminate duplicate and extraneous messages a further 

constraint was incorporated. It would be possible for a MAN to 

repeat sending data incessantly through the same channel round after 

round without having any new symbols to impart. Man j could send 

data to Man k on successive rounds when his state of information 

had not changed. Therefore, a MAN probabilistically refrains from 

sending repetitious data of this form. This probability is decreased 

directly. when this set of conditions recurs. A mathematical 

expression follows. 

Let P^D..) = .The probability of a data message sent from 

^ MAN j to MAN i during trial 

V = A correction factor, a value less than 1, which 
I* 

is determined by the number of times these 

conditions have occurred, r denotes the number 

of repetitions for this event. 

such that 

p‘(D..) = (Pt_1(D..)) V 
1J r 
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This procedure may be inconsistent with the mental processes 

of human subjects. Although there is little experimental evidence 

to indicate the sequential nature of this process, it was adopted to 

reflect similar observable behavior in subjects. 

Remembering. The "memory" of the MEN is imperfect. They 

do not remember what messages were sent or received from trial 

to trial. The results and actions for only the last round are stored 

in each MAN’S memory. With regard to the memory of human sub¬ 

jects, initially a subject does not know what network connects him 

with others and even when he determines this does not exhibit 

behavior indicative of his knowing the best routing scheme for task 

success. What apparently occurs is that a subject will hypothesize 

an organizational scheme which appears appropriate and will adopt 

suitable behaviors,. Clearly, the memory of human subjects in these' 

experiments was far from precise. In one of Cohen's aberrant groups, 

one subject remarked that he was forced to work with mental 

defectives, when in fact, they were senior college students. The 

MEN are required to remember only the transactions of the latest 

round. This assumption is weak, at best; however, this is the minimal 

level of expectation derived from the experimental findings. It should 

be recalled that even with this restriction, MEN are able to remember 

exactly the requests which have been made because these are tracked 

from round to round. 
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Altering Behaviors. Changing behavior, in the S-R tradition, 

suggests some effects of learning. The incorporation of learning 

into the modus operandi of a MAN was suggested by Lanzetta and 

Roby (1957). Noting that individual learning in task-oriented groups 

• « 

was a function of both task conditions and structural demands, they 

indicated that an individual would learn to adapt in the most efficient 

manner (for him) to the task and structure. 

The presence of feedback and reinforcement is a necessary 

condition for the facilitation of learning. A group’s performance 

without appropriate (i. e. differential) feedback is insufficient to 

achieve or maintain group proficiency. Also, practice alone could 

lead to a decrement in group performance as a result of absence of 

reinforcement, (Glaser and Klaus, 1966). Even for very high levels 

of initial performance, some form of differential feedback must be 

used to prevent any deterioration. 

In most CNE, reinforcement was provided by permitting all 

subjects to know when the trial or task had been completed, or 

after some number of messages had been transmitted. Providing 

feedback is included in the Leavitt task, but had not been clearly or 

precisely defined until Egerman (1966) stated that what has been 

termed communication channel and what may be called feedback 

channel are quite similar. Therefore, communication channels 

permit appropriate feedback for two network members when these 
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channels are open in both directions. Thus, Bavelas (1950) sup¬ 

ported by Leavitt (1951) and Heise and Miller (1951) soon recognized 

that networks with different attendant communication channels do 

affect network performance differently. However, these early 

studies had little to say in the way of a priori predictions of perfor¬ 

mance as a function of structure. At least the predictions were not 

even based upon learning-theoretic concepts which would permit 

the transfer of predictions from one network to another. Thus, 

even though communication channels and feedback channels may have 

been synonymous, not until Lawson (1964) and Burgess (1968) elucidated 

this point could this study have included an individual learning approach 

to a group's performance in the CNE. 

The adaption of an individual learning approach was predicated 

upon the recurrent finding of independent rates of learning for 

individuals in task groups. In this regard, Lanzetta and Roby (1957) 

have noted that the rate of change in communication was independent 

of task demands. 

The principles of learning employed in the model are loosely 

constructed upon Thorndike's "law of effect" (Hall, 1963, p. 59), 

a reinforcement theory in the connectionist tradition. The physical 

arrangement of the CNE isolates the network members such that 

both reinforcement and feedback must be channeled through one's 

communication links, if at all. Therefore, the type of learning 
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adopted by each MAN was trial and error, instrumental conditioning 

or operant learning (Lawson, 1964). 

When a trial is completed the model provides for a MAN to 

compare the number of rounds for the previous trial (PT) to the 

number of rounds for the current trial (CT). When PT = CT, the 

types of messages or channels used are recognized to be no more 

effective than any combination or permutation of messages and 

channels which were employed during the previous trial. In a loose 

sense a MAN realizes that his actions did not permit the number of 

rounds to decrease relative to the last trial. Therefore, his proba¬ 

bilities for selecting either a message or channel would not be 

positively reinforced or incremented. Reinforcement refers to the 

occurrance of a certain class of events in the proper relation to the 

to-be-learned response. The proper relation is that which tends to 

increase the probability of the response recurring. This formation 

is consistent with the author's concept of changes in message and 

channel selections, AA.. and AC... Whenever CT > PT, a MAN 
ij U 

realized his actions were detrimental to the group's performance 

and again his behavior would not be reinforced. However, if one or 

more MI'JN employed a sequence of both messages and/or channels 

such that CT < PT, each MAN would immediately recognize that 

his efforts were more efficient than those of the previous trial. The 

predominant choices of messages and channels selected during this 



48 

trial were then reinforced by incrementing the associated proba¬ 

bilities. Negative reinforcement was loosely applied by corres¬ 

ponding decreases in the probabilities associated with the less 

frequent, or unused, behaviors. Recall that in the two matrices 

used for the selection of both messages and channels, the summation 

of probabilities for each MAN was 1. 0. Thus, these probability 

changes were shifted satisfying this equality. Symbolically, learning 

* 

is expressed as follows: 

An instance of learning by MAN j, only when PT - CT < 0. 

t t — 1 
£P(A..) = P (A..) - p (A..), where t = present trial, 

1J 1J 1J i = 1, 2, 3,4 

j = 1, 2, 3,4 

Ap(C..) = Pfc(C..) - Pt_1(C..) 
1J 1J 1J 

It should be noted that a MAN could only evaluate his trans¬ 

actions as in the laboratory setting. Here a subject was not aware 

of what all the members are doing. Thus, it is quite possible for 

a MAN to use combinations of messages and/or channels which might 

inhibit efficiency; yet, if CT < PT, he would be reinforced for this 

inhibitory behavior. Improvement of the solution rate, or efficiency 

of performance, then becomes a function of individual learning rates. 

Clearly, while some MEN may be reinforced for 'good' behavior, 

others may be reinforced for 'bad1 behavior. To achieve long-term 
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increases in efficiency, or rates for solution, each network member 

must eventually increase his probability of sending data messages 

and decrease the probability of other choices of behavior. 

Basic Model Assumptions. In most analytical models, the 

assumptions are clearly stated. Simulation models tend to mask 

their assumptions. Therefore, the model’s salient assumptions are 

presented.' 

1. The simulated subjects (MEN) are equal in their ability 

to perform the task. There is no prior experience. 

2. Initial rates for sending messages and selecting com¬ 

munication channels are equal for all participants. 

3. Learning does not occur at the same rate for all the 

participants. 

4. No noise exists in the model’s system;, only communication 

relevant to the task is permitted. 

5. The task is understood by all simulated subjects. 

6. Each MAN works independently (as explained in the 

paradigm). 

7. All current information is transmitted whenever a data 

message is sent. 

8. Learning achie.ved by each simulated subject is measured 

by the difference between his present probability distri¬ 

butions for both message and channel selections and the 

initial set of distributions. 

9. Learning and changing sets of behavior is permitted only 

at the end of a trial. 

10. The degree of skill in the task accomplished by all the 

network members is measured by their rate of problem 

solution. 
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These assumptions define the process, yet at the same time, limit the 

inferences which can be drawn from the model. 

The major features of the model, then, are: 
I* 

1. A set of messages and channels which 

(a) lead to a solution of the problem. 

(b) influence behavior patterns. 

2. A set of rules which 

(a) provided for probabilistic changes of message and 

channel selection. 

(b) permit non-optimal performance but require logical 

consistency in problem solution. 

(c) identify ’good* behavior and tend to have it repeated. 

(d) allow certain kinds of sensible behavior to develop 

over the course of a number of trials by 'recognizing' 

both desirable and undesirable modes of behavior. 

3. A set of initial program parameters which are altered 

during the course of the simulation. 

The sequence of the model. Examining the process of the 

model's operation from the computer's point of view, the nature of 

each simulated run can be subdivided into eight sequential steps. 

These steps are related to behavior by the categories listed in 

parenthe ses. 

1. initialize parameters 

2. generate selection rates (searching) 

3. initiate task process 
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4. determine progress for network members (comparing, 

remembering) 

5. evaluate task productivity 

6. compute probability changes for selection rates (altering 

behaviors) 

7. output dependent variable 

8. return to step 2. 

The last seven steps are repeated for as many times as desired. 

For this study, 800 repetitions were conducted for each run as 

explained above. 

Summary. This chapter presents an overview of the computer 

simulation model. 

Four simulated subjects comprise the experimental networks 

in the model. Initially each simulated subject is assigned probabilities 

to initiate messages and channels. Over time these rates of com¬ 

munication will improve as a consequence of feedback (Leavitt and 

Mueller, 1951); therefore, reinforcement is provided at the end of 

a trial by permitting comparisons to be made of current behavior to 

past successes. This procedure is representative of human behavior 

in these experiments (Cohen, 1964). 



CHAPTER III 

THE MODEL 

Introduction 

This chapter presents a detailed discussion of the simulation 

model's elements and interrelationships. The construction of many 

interrelationships was predicated upon the judgement of McWhinney 

(1964) and Burgess (1968, p. 331, p. 334) that interactions in the 

CNE setting have a large rational component. Furthermore, they 

indicated that the variety of approaches taken by subjects to organize 

their groups to perform efficiently is small and, for the most part, 

well defined. The MEN operated rationally, in that only the avail¬ 

able paths at decision points could be selected. 

To facilitate the presentation of the information processing 

procedure, a series of charts is provided. In a loose sense, they 

are flow diagrams of the searching, comparing, remembering and 

altering of behaviors performed by the MEN. The use of a pro¬ 

gramming language required specifications of these procedures in 

terms of subroutines, matrices, loops etc. which do not lend 

themselves to fluent explanations of behaviors. Therefore, the 

schematic representations and their explanation are presented in 

more common language. This casual treatment is not intended to 

mask or rationalize any assumptions or relationships. Rather, the 
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stages and protocols are traced, the reasons for their use and 

outcomes and change mechanisms are explicitly stated. 

Basic Model Process. Figure 3-1 is a presentation of the 

basic model processes. Each major stage is represented by a node 

' or box. 

Although the choices and decisions made by each network 

participant are relatively straightforward, the progression of 

behaviors to reach these points is not. The instances of switching 

and parallel operations may be more clearly understood by reducing 

each basic node into its components with a further diagram and 

exposition thereof. 

Box 1 

Trial Initiation 
, / 

The task of each trial is independent from those previously 

accomplished. Being well-established in the paradigm, all previous 

experience was embodied only in the probabilistic selections for 

messages and channels, and all other decision paths remained open. 

Box 2 

Round Initiation 
. *: 

The beginning of a trial is initiated by a round. When the 

problem is solved and each MAN has the answer, the trial terminates. 

Until then, rounds consist of each MAN sending a message through 

a channel. To determine the rate of solution, the number of rounds 
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per trial was obtained as a measure of output. The constraint of 

sending simultaneous messages prohibited differential time units 

to be accumulated for every MAN--hence, the equivalence of. time 

units to rounds. 

Box 3 

Message Selection 
i ; 

Four messages were employed in the information distribution 

process. They were 

(1) transmittal of data. 

(2) requests for data. 

(3) requests for answers. 

(4) waiting. 

A discussion of input parameters for probabilistic selection of these 

messages is presented, followed by a delineation of the conditions 

which might attenuate this selection. 

Without a priori knowledge, it is a reasonable practice in 

simulation models to set input parameters for choices of behavior 

equally. Descriptive indications of these behaviors are, however, 

present in the group problem solving literature. Shelly and Gilchrist 

(1958) studied this phenomenon in four man groups in Wheel and All- 

Channel networks. They reported that in these groups far more 

messages were sent than were necessary during the initial stages of 

the experiments. Kelly and Thibaut (1971) observed that these groups 
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were handicapped by an inability to organize their information into 

profitable patterns. Subjects would forget to send crucial items of 

information, and much time was wasted in information-seeking and 
• ** 

other behaviors, activities unnecessary in optimally organized groups. 

I 

Similar observations are reflected by Cohen (1964). His content 

analysis of messages indicated a less frequent occurrence of data 

messages than any other type. Also, Lanzetta and Roby (1957, p. 57) 

pointed out that a 

. . . major problem faced by problem solving groups is not 

simply one of transmitting, but of phasing messages. 

They explained further, that when each member has a primary source 

of information required for the task solution, initial solutions were 

replete with errors. This may have been due to fewer transfers of 

information. 

Consistent with this evidence, the initial probabilities were 

set as indicated in Table 3-1. 

TABLE 3-1 

INITIAL PROBABILITIES 

FOR MESSAGE SELECTION 

Mes sage Probabili 

Transmittal of data 0. 10 

Requests for data 0. 30 

Requests for answer 0. 30 

Waiting 0. 30 

1 . 00 
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These input parameters reflect the inclination and propensity 

of subjects in group problem-solving activities to initially send 

fewer data messages and generate a number of communications 

which do not substantially contribute to optimal efficiency. 

These initial probabilities are not consonant with Bales' 

findings reported in his Interaction Process Analysis scheme. 

However, his classification scheme might be open for interpretation 

when applied to this paradigm. 

The first major decision made in the process was the selection 
/ 

of a message. Four factors could limit this direct choice. Whether 

a MAN had 

(1) an answer. 

(2) any requests outstanding for data. 

(3) any requests outstanding for an answer. 

(4) waited during previous rounds. 

A schematic of Box 3 is further delineated in Figure 3-2. 

Box 3A Answer Determination. Consistent with the assumption 

concerning rational behavior, once an answer was compiled by a 

MAN he was constrained to sending it in place of extraneous infor¬ 

mation. Although some experimental evidence mentioned in Chapter 

Two indicates this may not always be true of subject behavior, this 

is the exception rather than the rule. For MAN j to send or transfer 

the answer to MAN i all the elements in MAN j's answer vectors 
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ANS., replaced all the elements in MAN id's answer vector. To 
J 

search and compare for this condition, a MAN had to 

(1) evaluate his state of information. 

(2) identify which MAN needed an answer. 

(3) check for answer requests. 

The sequential process is outlined in Figure 3-3. 

Box 3A1 State of Information. Recall the operation of vector 

i • ^ 

ANS... When ANS,.. = 1, the answer was available to MAN j, he 

proceeded to Box 3A2 . If not, he moved on to identifying requests 

(Box 3B). 

Box 3A2 Answer Request Determination. By evaluating N .., 
2lJ 

a MAN could identify 

(1) which i's had requested an answer. 

(2) how many answer requests had been made by each i. 

See the next page for a summary of symbolic expressions used 

in this chapter. If there were no requests for answers, a MAN 

would search for a possible channel through which to send his 

answers (Box 3A3). To determine through which channel a response 

to an answer request would be made, it is necessary to review two 

behavioral processes. Interaction rates are discussed now in general 

terms with more specific instances applied in Box 3. Response to 

Request rates are discussed in a similar fashion above. 

Interaction Rates. Interaction rates arc a major component 
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BOX 3AI 

BOX 3A: ANSWER DETERMINATION 

FIGURE 3-3 



61 

Summary of mathematical symbolism used in Chapter Three 

1. ANS. 
D 

problem solution received by MAN i from 

MAN i. 

2. N - response n requested by MAN i of MAN j. 

3. P(C..) 
U 

- probability that MAN j will select channel i. 

4. P(A..) - probability that MAN j will select message i. 

5. KNO.. 
N 

— channels i which remain available to MAN j 

for transmitting an answer. 

6. LST.. 
D 

• — data sent from MAN j to MAN i during the last 

round. 

7. P(RS .) 
nj 

= probability that MAN j will respond to request 

n. 

8. KWA. 
J 

- the number of successive rounds MAN j did 

not send a message or waited. 

9. V 
r 

= a correction factor for selection of a channel 

when data was sent r times during a trial. 

10. SN .. 
mij 

= total of messages m sent to MAN j from MAN i 

11. RC .. 
mij 

= total of messages m received by MAN j from 

MAN i. 

12. DAT.. 
U 

- number of data messages sent by MAN j to 

MAN i during one trial. 

13. CUMSN .. 
mij 

= 

i 

cumulative total over all trials for SN 

14. CUMRC .. 
' mij 

= cumulative total over all trials for RC 
mij 
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of the model. They are used in a number of decisions where choices 

of channels are required (Boxes 3A3, 3B5, 3C5, 5A and 7C). The 

foundation for employing interaction rates is presented at this initial 

encounter. Demands for information can be placed upon a network 

member from others simultaneously. To establish priorities for 

reaction, exchange theory (Thibaut and Kelley, 1959) appeared 

appropriate. 

The theory assumes that the existence of the group is based 

solely upon the participation and satisfaction of individuals within 

the group. Therefore, the analysis of group processes must be in 

terms of the adjustments that individuals make in attempting to 

solve their problems of interdependency. It is not too difficult to 

see that this view leads almost inevitably to the adoption of a rein¬ 

forcement orientation. Thus, v/hen an exchange of communication 

is 3omehov/ satisfying, the probability of further exchanges is 

reinforced between those participating. Thfbaut and Kelley limited 

their analysi s to a dyad, which is also considered the relationship 

between subjects in the ClTo. 

Two key concepts in exchange theory important to this study 

are interpersonal relationships and interaction, /hey are inter¬ 

dependent and can be defined together. 1 he central feature of 

interaction . s the interpersonal relationship, and two persons are 

said to have formed a. relationship if they interact on several 
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occasions. Interaction may be defined, as suggested by Thibaut 

and Kelley: 

By interaction is meant that they (dyad) emit behavior in 

each other’s presence, they create products for each other, 

or they communicate with each other. In every case that 

we could identify as an instance of interaction, there is at 

least the possibility that the actions of each person affect 

the other (p. 10). 

This process is included in the model; interaction is selective both 

as regards to who interacts with whom and what behavior sequences 

are enacted. This conception is much like input-output analysis. 

The consequences of interaction (outcomes) are described in terms 

of rewards and costs. Reward refers to those aspects which the 

individual finds gratifying or satisfying. 

The provision whereby a drive is reduced or a need fulfilled 

constitutes a reward (Thibaut and Kelley, 1959, p. 12). 

If there is a positive balance between rewards and costs of an action, 

each new experience will lead to a modification of the interaction 

rate. (Similar to the suggestion by Thibaut and Kelley, the model 

permitted an increment for decrement from one interaction to be 

negligible. ) 

When a choice of channels needs to be made, the concept of 

"comparison level" is used. Thibaut and Kelley's comparison level 

(CL) is a loose standard against which an individual evaluates the 

attractiveness of an interpersonal relationship, or how satisfactory 

it was. In the model, whenever communications between two MEN 
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have been rewarding (increased the solution rate), the attractiveness 

of using this channel is incremented. Therefore, the CL or selection 

of a channel is a direct function of which channel was most rewarding 

during past experience. 

In summary, this analysis of group interaction can be used to 

predict the course of interaction if one can identify the rewards and 

costs in the situation. Thibaut and Kelley proposed that an individual 

generally repeats a rewarded response, but does not repeat a costly 

response. Therefore, in the model, whenever equally competing 

demands for information are placed upon a MAN, the response 

channel selected was that which had achieved the highest interaction 

rate. This concept is consistent with other formulations of this 

process (Sherif and Hovland, 1961; Homans, 1961; Helson, 1948-; 

and Tresselt, 1947). 

If only one answer request was present in N , that channel 
u 

was selected. When more than one answer request was present, a 

comparison of P(C..) was made to isolate the highest interaction 
^ J 

rate. A response was then made through that channel. In the case 

of equal rates of communication, conformity to expectations was 

applied. 

A request may be viewed as a form of pressure. Pressures 

and expectations are created when a request is made, and are 

readily perceived because the transmission of these expectations 
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are made very explicit in the communication process. Kiesler 

(1969) noted that when individuals are committed to each other 

because of situational factors (e.g. , CNE) they will want future 

interaction to be as smooth as possible. In accordance with these 

expectations, Kiesler stated that a person will conform (with a 

response) so that the groups' goal will be achieved and/or the next 

interaction of this type will be rewarding. 

Kiesler, Kiesler and Pallak (1967) report in an analogous 

situation that improvement in task efficiency requires group mem¬ 

bers to conform to informational expectations if they wish to be 

liked. 

Therefore the tendency to conform to these expectations was 

increased as perceived pressures and expectations increased. Or 

as in the model's application, the greater the number of messages 

- c 

from MAN i, the greater the tendency to respond to MAN i. There 

fore, whoever exerted the most pressure, in the form of requests, 

was most likely to receive the response. In the case of equally 

distributed interaction rates the highest value for N_.. determined 
2ij 

the response channel. The result of an answer response, at this 

point, was elimination and reduction to zero of any value in the cor¬ 

responding or appropriate N . These three cases are summarized 
V 

as follows: 
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(1) only one answer request 

When only one answer request has been made of MAN j 

from all other network members, MAN j will act upon 

that request which is identified by the appropriate N9.. = 1. 

(2) answer requests from more than one network member 

When answer requests have been made by more than one 

network member to MAN j, he selects the request from 

that MAN with whom he has the highest interaction rate 

to act upon. 

(3) no highest interaction rate 

When there is no highest interaction rate between MAN j 

and the other network members who have made an answer 

request to MAN j, the tie(s) are broken by a random 

selection. 

Box 3A3 Answer to Available Channel. With no answer requests 

outstanding, the two options remaining are (1) to find an available 

channel or (2) wait for the next trial. The choice of a channel is 

dependent upon 

(1) The channels through which answers had previously been 

sent. 

(2) The channels from which answers had been received. 

(3) Any remaining possible channels. 
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The selection of a previously used channel to send the ansv/er 

v/as prohibited. The resultant endless repetition which would be 

produced by these behaviors is neither representative of human 

subject behavior nor permitting of solutions within reasonable time 

periods. Unless this restriction had been imposed, task solution 

rates could have been of indeterminate length at any time in the 

simulated runs. 

Another decision rule to prevent repetitious messages v/as to 

prohibit answers to be transmitted through a channel from which the 

answer had come. A rational person would not return the solution 

to the source from which it had come. Conceivably, rather than 

deduce the answer, it could have been conveyed to a netv/ork member. , 

Again, human subject behavior indicates a preponderance of evidence 

that returning the ansv/er is redundant, does not increase the solution 

rate, and therefore occurs infrequently. Toward the end of a series 

of trials, this behavior v/as not present at ail. 

After an assessment v/as made for the two decision rules men¬ 

tioned above, one or more channels could still be available. The 

selection v/ouid then be dependent ;pon the highest interaction rate 

o f t he s e r e rna i n n g e ha n r, els. 

Once a MAN had sent answers through every channel permitted 

by the net work, ne ceased sending messages and v/aitec for the 

b.ch behavior has not been systematically recorded ar/; next tr;aL 
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there is no evidence to support this contention other than a claim for 

raticnal behavior. 

To test for these decision rules, a matrix was created to iden¬ 

tify the transmittal of answers -through his channel during a trial. 

This is mathematically expressed as follows: 

Let KNO.. = an element of the matrix denoting channels from 

1J MAN j to MAN i. 

where j = 1, 2, 3, 4 

i = 1, 2, 3, 4 

where the diagnals =1.0 and every element in 

the matrix which corresponds to a channel closed 

to communication for each network member is 

also set at 1.0. An open channel is identified 

v/here KNO.. = 0. 
U 

The outcome of transferring an answer from MAN j to MAN i was to 

increment the appropriate KNO.. = 1, to indicate to MAN j that he 
O 

had used this channel to send the answer. Additionally, KNO.. was 
n 

set = K2'<0 . so that when MAN j wished to send an answer during the 
U 

next round, he would send it neither back to the member from which 

he received the answer nor to the member to whom he had already 

sent it. When all possible channels had been used such that 

£ KNO,. = 4.0, MAN j would wait for the next trial. 

i= 1 D 

Box 3B Data P_e quests. When a MAN does not have the 

answer, he proceeds to examine the results of the last round to 

identify requests for data. If they are present in Nj several 
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decisions must be made. These choices are embodied in Figure 

3-4. 

Box 3B1 No Requests. In the case where no data requests 

have been made, N .. = 0. for all N.... Man j continues to Box 3C. 
lij lij 

Box 3B2 Determine Source of Requests. In a fashion similar 

to Box 3A2, a MAN must determine 

\ 

(1) source of requests from all i's. 

(2) number of requests for all i1 s. 

(3) appropriate interaction rates of i1 s. 

The mathematical symbolism is identical in this instance, except 

the substituting N .. for N_... 
lij 2iJ 

There is one further constraint in the search for data, requests. 

It is conceivable that MAN j sent his data to MAN j sent his data to 

MAN i during the last round. Since then he may or may not have 

received additional data. If no new data could be added to that which 

he had las-t round, a response through the same channel to MAN i 

would, in effect, be repetitive and not warranted. Therefore, once 

a channel was selected for a response, an assessment was made, 

first as to data sent last round, and next, as to the state of infor¬ 

mation vis-a-vis the last round. 

The first comparison was made by examining a matrix which 

identified data sent from MAN j to MAN i during the last round. 
t 

When this value was zero, no data had been sent. In the case where 
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BOX 3BI 

BOX 3B: DATA REQUESTS 

FIGURE 3-4 
. 

■ * 

: 

* • 
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this value was positive, a further comparison was made on the cur¬ 

rent state of information. To represent this first comparison 

mathematically: 

Let LST.. = an index used to record data sent during the last 

round from MAN j to MAN-i. where each element 

could be set = 1. 0 in two ways. Either the 

element was a diagnal of the matrix or it was used 

when data had been sent from MAN i to MAN j. 

The state of information since the last round for MAN j was 

then contrasted to his answer or information vector for round n to 

that of round n-1. When additional information had been collected 

after the request was made (last round), the appropriate response 

was made to the N^ requestor (N ) as in the three cases analogous 
J 

to Box 3AZ. When the information vector for MAN j had not changed, 

he returned to the start of Box 3B2 and began the search procedure 

anew. The state of information comparison can be expressed 

symbolically as: 

i* * t t,-l 
N,.. = k where k is positive when ANS. *. > ANb 

lij k j k j 

Box 3C Answer Requests. The search to evaluate outstanding 

requests for answers follows a process similar to Box 3B2, and is 

accomplished with a substitution of N_.. for N_... See Figure 3-5. 
■ 2ij lij 

Box 3C1 Determine Source of Answer Requests. In the case 

where no answer requests have been made, N . = 0 for all N , 
. 2 ii 2ij 

MAN j continues to Box 3D. 
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BOX 3CI 

BOX 3C: ANSWER REQUESTS 

FIGURE 3-5 
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Box 3C2 Determine Source of Answer Requests. The identical 

decisions for Box 3B2 must be made: the number and source of answer 

requests from all channels and their corresponding interaction rates. 

The selection procedure is the same and the mathematical represen¬ 

tation is also identical except the substituting of N for N 
2lj lij 

The resultant action, taken after a response to a request had 

been completed, was a decrement of the proper N . by 1. 
niJ 

Even a cursory observation of response behavior in actual 

CNE, would verify the suspicion that not all requests elicit responses. 

As reported earlier, Marshall pointed out that subjects did not 

respond to messages at times, even though they were sensible. 

There is evidence, though, in most of the CNE that response behavior 

does improve over time. At best, initial probabilities for response 

behavior were required at the initiation of the simulated runs. 

These probabilities would naturally increase or this behavior would 

improve with subsequent successful experience,, A discussion of the 

determination of these input parameters is now presented. 
\ 

• , , \ 

Responding to Information Requests. In their problem solving, 

MEN had two types of distribution problems: those of information 

distribution and of response distribution. The first type of problem 

has been discussed above. The second type of problem arises from 

the necessity to coordinate responses to request's to achieve task 

completion. Depending on the nature of the contingencies between 
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responses to requests and outcomes, some, or all, of the MEN may¬ 

be required to make a number of responses in one round. This 

requirement may be disjunctive in the sense that only some members 

need to make these responses. Bales and Strodtbeck (1951) indicated 
4 

that subjects in task-solving groups do not increase these responses 

until the later stages of problem discussions. This finding begins to 

establish a rationale for setting the input parameters of response to 

requests relatively low at the inception of the simulation runs. 

For the CNE paradigm, probabilistic relationships concerning 

the response to informational requests are not evident in both the 

CNE and group problem-solving literature. Although Leavitt (1951) 

and Cohen (1 962) examined message content and sequence, neither 

systematically compared his results to this situation. They cata- 

gorized messages in a fashion similar to that of Bales’ Interaction 

Process Analysis. Of particular interest were the number of: (a) 

data messages, (b) requests of any kind, -(c) non-task related 

messages and (d) incorrect answers. They did not report the nature 

and amount of responses to any requests. 

The frequency with which MEN responded to a request at the 

initiation of a run required input parameters which had not been 

empirically developed. A survey was then conducted by the author 

to determine a minimal range of probabilities for these actions. By 

evaluating trial outcomes relative to frequencies of responding to 
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requests, MEN could be reinforced and increase these tendencies. 

A detailed explanation of the task and physical constraints were 

presented to 86 randomly selected subjects. Two questions were 

then posed. 

(1) How often would you send data in response .to a data 

reque st? 

(Z) How often would you send data to a request for an answer 

if you had not determined the answer? 

i 

The inclusion of the second question was predicated upon the possible 
r 

set of conditions in which requests for answers might be made. A 

further assumption regarding this situational conflict was included 

\ 

in the model. Even though a MAN would not have the answer, 

operating under the imposition of rational behavior, he might wish 

to respond. To this end, he would provide the most complete set of 

data he had. When a response was sent to this request for an answer, 

a MAN would send his information vector. 

The respondents were asked to rate this behavioral tendency 

on a 100-point bipolar scale (ranging from 0 to 100). The results 

are displayed in Table 3-1 
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TABLE 3-2 

INITIAL RESPONSE RATES TO 

DATA AND ANSWER REQUESTS 

Type of Request ' Mean Range Standard Deviation 

Data Request 39. 7% 20-78% 10.31 

(question 1) 

Answer Reque st 10. 2% 0-26% 3. 92 

(question 2) 

The distribution of these observations around the mean statistic 

was observed to be leptokurtic. Leptokurtosis refers to a distri¬ 

bution with a pronounced peak. This clustering increased the con¬ 

fidence that the mean statistic was a relatively reliable estimate of 

the behavior advanced by the subjects. Confidence limits were then 

established for the population mean within 95% limits based on a 

t-distribution. These confidence limits were 39. 7 +_ 2. 2 (85 D. F. ) 

for responses to data reque sts and 10.24^0.837 (85 D. F. ) for 

responses to answer requests. This increased reliance that the 

mean statistic represented an appropriate initial probability. 

Therefore, 0.40 and 0. 10 were applied as input parameters for 

responses.to data requests and answer requests ..respectively. 

Symbolically, response to requests are expressed as: 

Let P(RS ) = The probability that MAN j would respond to 
n j 

request n, where n = 1, 2; n^ = data request 

n^ = answer request 
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The artificiality of this survey (vis-a-vis observed behavior) again, 

imposes limits to the generalizability of the model. However, the 

costs to develop more precise probabilities would have been pro¬ 

hibitive; for this would have required establishing and running a 

number of CNE. 

Box 3D Evaluate Waiting Period. It is reasonable that rather 

than sending messages, a MAN would do nothing, or wait. Indeed, 

this is evident in human subject behavior. Cohen's (1962) content 

analysis yielded not only several types of messages which he 

classified as stalling, or waiting, but also recorded periods of time 

when a subject was in a position to perform some constructive 

action, yet hesitated to do .so. This phenomenon is also reported by 

Guetzkow and Simon (1955), Guetzkow and Dill (1957), and Cohen, 

Bennis, and Wolkon (1961), and Guetzkow (1965, p. 551). 

The model permits waiting as a possible option in place of a 

message. However, because indeterminate waiting might prohibit 

a solution and is, indeed, not representative of subject behavior, 

the model limits a MAN to two successive rounds of waiting. 

Although there is no empirical evidence to support this artificial 

f 

constraint, it appeared to be a reasonable facsimile of rational 

behavior. Nevertheless, the act of waiting in place of sending a 

message could be reinforced, and was done so with some frequency. 

The constraint was mathematically expressed as: 
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Let KWA. = The number of acts of waiting in successive rounds. 
J 

where the range = 0, 1, 2 

Box 4 

Channel Selection 

Initial probabilities for channel selection were included as 

input parameters. Raino (1965) suggested that in simulation models, 

all initial contact probabilities could be assumed to be equal. This 

is not an unreasonable initial situation for a group of strangers. 

Additionally, Bales (1951) noted that groups without an assigned 

leader tend to have equal distribution of participation among members. 

Without prior expectations regarding structure, pretrial information 

distribution, or knowledge of participants, no a priori statements 

can be made to support differential contact probabilities. This was 

introduced in the model by setting the initial probabilities equal. 

For MAN 4 in an All-Channel network this can be represented as 

3 =1. where P(C]4) = P(C24) = P(C^). 

Z P(C.J 

i=i 14 

Box 4A Determine Redundant Data Message. Recall in Box 

3B2, that successive data messages through the same channel were 

restricted. When the searching process was repeated, (another 

message was selected) a MAN could, by virtue of his interaction 

rates P(C ), select the identical channel. The sequence of repeti- 
ij 

tion v/as first choice of a message then of a channel. The procedure 
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was selected to facilitate the model's construction. More decision 

branches occurred after a message selection than after a channel 

selection. Employing this sequence prevented repetitious looping 

in the computer program. Also, this programming technique con¬ 

tributes to lower running time on the computer. 

Therefore, the redundancy restrictions were required in both 

respective selections. The outcomes and operation of this procedure 

were identical with the use of LST... A flow diagram of Box 4 is 
ij 

presented in Figure 3-6. 

There is abundant evidence that repetitious information is 

processed in problem solving groups. Macy, Christie, and Luce 

(1953) discovered that duplicate information transferred in'their 

network experiments actually increased productivity in some cases. 

Baker, Ballantine, and True (1949) reported the use of repetitious 

data through one or two channels in management and union dis- 

4 

cussions. Further support is provided by Cyert ancl March (1 963), 

Willis and Hale (1963), and Miller (1951). In CNF terms, although 

a data message was sent through a channel during the last round, the 

restriction imposed by LST.. may be modified. A MAN mighl wish 

to repeat a data message. Observations in CNN demonstrate that 

there is a limit to redundancy, and it is subject dependent. Cohen's 

(1962) content anulysi s descriptively reports this behavior. 

To accommodate this behavior, < Is; model permits repetition. 



BOX 4A 

BOX 4= CHANNEL SELECTION 

FIGURE 3-6 
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However, the more frequent its occurrence, the lower the proba¬ 

bility becomes for its repetition within a trial. When the examination 

of LST.. is positive, the P(C..) is modified by a correction factor V . 
H ij r 

Values for V were assumed to be linearly related to r such that 

= 0. 10, = 0. 20, = 0. 30 and V .= 0. 40. This can be expressed 

mathematically as follows: 

when LST.. > 0, Pfc(C..) = Pt_1(C..) - Pt_1(C .)V 
ij iJ ij r 

Box 5 

Memory 

To alter behavior, a memory was incorporated such that 

comparisons could be made relative to past experience. Both the 

MEN and the program recorded transactions which are delineated 

in Figure 3-7. 

As a result of the two primary behaviors elicited in the model, 

each MAN was cognizant of two outcomes: his actions and those 

enacted upon him. Box 5A describes the first of these outcomes. 

Box 5A Initiating Behaviors. A MAN sent messages through 

various channels during the course of a trial. As in Cohen's 

experiments where subjects began to record what they had done on 

a scratch sheet, the model permits each MAN to. record his 

message and corresponding channel through which it was sent in a 

matrix. 
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BOX 5= MEMORY 

FIGURE 3-7 
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This memory can be symbolically expressed as follows: 

Let SN ‘ A counter whose value indicates message m sent 
mil 

sent to MAN i from MAN j, where m, i and j can 

take on values = 1,2, 3, 4. 

One more row was added to this matrix to accumulate the totals for 

all messages sent by each MAN to the other members through the 

4 

open channels. This is expressed as £ SN .. = SN_. . The values 
, mil 5u 

m=l J J 

in this row were used to determine which of these behaviors occurred 

most often for each MAN and would be learned. 

Box 5B Outcomes Received. To determine which channels had 

contributed to greater task efficiency, a MAN recorded the number 

of messages sent to him from each channel. No waiting messages 

* ' . % 

were counted, because the structure of the paradigm prevented 

recognition of its source. Symbolically these outcomes were 

expressed as: 

Let RC 
mji 

A counter whose value indicates message m 

received by MAN j from MAN i, where m = 1,2,3; 

i = 1, 2, 3, 4; and j = 1, 2, 3,4. 

One more row was added-, to this matrix to accumulate the totals for 

all messages received by each MAN from the other members through 

3 

the open channels, such that ^ RC .. = RC . The values in this 
.mil 4 1 

m= I J 

row indicated from which channel the most frequent messages were 

receive d for each MAN and are used to change the probabilities for 

channel selection. 
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Box 5C Data Transmittal During Trial. To record the fre¬ 

quency with which a data message was sent through the same channel 

during a trial (r), another set of vectors was utilized. Recall, that 

this was necessary to apply the correction factor, V . This 
r 

operation is mathematically expressed as: 

Let DAT.. = An index to record the number of data messages 
ij & 

sent by MAN j to MAN i during a trial, where 

j = 1, 2, 3, 4 

i = 1, 2, 3, 4 

The appropriate position in this matrix was incremented for every 

transfer of data, such that r = DAT .. 
D 

Box 5D History of Past Trials. The program registered 

cumulative experience in the trials for the readers' reference by 

accumulating the results of the outcome matrices SN .. and RC 
mj l mj l 

as CUMSN .. and CUMRC .. respectively, 
m j i mj i 

Box 7 

Learning and Altering Behaviors 

When an individual performs in a non-group situation, incre¬ 

ments or decrements in his proficiency occur as a result of the 

reinforcement he receives. Glaser and Klaus (1966) demonstrated 

that in their experiments it was possible to derive the same gen¬ 

eralization about group performance from an analysis of the changes 

in individual member performance which occurred as a function of 

the reinforcement contingencies experienced by each member. In 
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regard to group problem solving, Bales and Stodtbeck (1951), 

Borgatta and Bales (1955) observed that newly assembled groups 

are able to make only abortive attempts at task performance so long 

as the role structure remains undefined. Once the group has 

developed this structure, members are able to proceed with the task. 

This process of organization is what McWhinney (1964, p. 8) claims 

is largely indistinguishable from what others call group learning. In 

their work on CNE, Guetzkow and Dill (1957) supported a learning, 

or reinforcement, theory of role differentiation. Stogdill (195-9> 

p. 168) summarized these findings in CNE by stating: 

Since the differentiation of role structures is facilitated 

by reinforcement, the development of organization may 

be regarded as a learning process. 

A concise statement of this learning process was proposed by 

Egerman (1966). He surmised that in CNE-type groups an individual 

receives feedback through the channels of communication open to 

him. Clearly then, learning in some form must be included in a 

MAN'S repertoire of behavior. 

Egerman's findings suggested a stimulus-response relation¬ 

ship (S-R). The model incorporated the S-R approach by loosely 

basing the learning procedure on Thorndike's "law of effect. " It is 
i 

simply stated as the habit formation of stimulus - re sponse connections 
» i 

depending not simply on the fact that the stimulus and response occur 

together, but on the effects followed by that response. 
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Psychologists have proposed several terms to suggest that a 

specific S-R relationship is being or has been learned. The most 

common terms have been "habit formation" and "memory. " Habit 

refers to a functional relationship between the stimulus and the 

response. Formation refers to the establishment of these events 

as they occur over time. The term "habit strength" indicates how 

firmly a particular S-R relationship has been established. It is 

assumed to reflect the summation of effects for the amount of 

reinforcement and the number of reinforced repetitions. Hull 

(Osgood, 1953) postulates that the increment in habit strength becomes 

increasingly smaller as the training (number of reinforcements) 

progresses. Each additional reinforcement produces less strength- 

. : 

ening of.the habit formation than the one preceding it. In 

mathematical terminology this is described as a negatively accelerated 

function. These functions can be found readily in biological growth 

and decay phenomena. , 

In this study, the incorporation of learning took the form of a 

linear model developed by Bush and Mosteller (1955). They 

postulate that one subset of the sampled stimuli becomes conditioned 

to the response that occurred, and another subset becomes decondi- 

tioned to that response. Their formal model for reward training 

and rote learning permits reinforcement for one class of responses 

and no reinforcement for making all other responses. The 
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assumption is made that the individual process in CNE more closely 

resembles reward training than any other. Symbolically, their 

proposition can be expressed as follows: 

t+1 t 
P - q'+ (1-0') P where t = the trial number 

1 -a = base rate of change 

Recently Allen and Estes (Tapp, 1969) have cast doubt on the 

effect on learning where subjects are unaware of the relationship 

between response and rewarding outcomes. Their work, however, 

presents no complications for the model, as the MEN are certainly 

aware of their actions and feedback channels once a solution is 

reached. 

The previous studies indicated the relevance of feedback and 

reinforcement in altering individual behavior within group structure. 

The amount of change produced by feedback or reinforcement varies 

from study to study. A value for the rate of change'in learning had 

to be obtained from the connectionist theory literature. 

A study by Greenspoon (1955) indicated that under continuous 

reinforcement, the change in an individual's verbal output per trial 

period was approximately three per cent. The learning in this model 

generally occurred under a continuous reinforcement schedule. For 

tasks involving similar structures to CNE, Egerman (1966) found 

the order of most favorable schedules to be first, continuous, then 

i 

aperiodic, only when correct answers were attained. However, 
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since the paradigm permits only written communications, it seemed 

reasonable that this rate, should be decreased when voice inflections 

and non-visible cues were absent. Thus the change rate would be 

less than three per cent per trial. Under this restriction, • the 

value of l -o’ was set at two per cent. It should be noted that the 

rate of change, or learning, in the model should affect the dependent 

variable (solution rate) only by altering the slope of the curve over 

time, which may change the time to reach a steady state. 

The behaviors altered as a result of trial experience are 

presented in Figure 3-8. 

Specifically the crude learning model in this study operated 

in the following manner. When time taken to solution (number of 

rounds) improved over last trial, such that CT < PT, anthropomor- 

phically, a MAN would think he had done something better than last 

time. The tendency to repeat these actions, according to the "law 

of effect" would then be incremented. In McWhinney's analysis of 

information-distribution processes in CNE, he indicated that 

. . . the character of cybernetic feedback mechanisms 

leads to repetitions of prior behavioral choices when 

"hits" and "good outcomes" occur. 

The three actions whose probability could be increased are: 

(1) P(A .), The probability of MAN j sending message i. 
ij 

(2) P(C ), The probability of MAN j selecting channel i. 
ij 

(3) P(RS ), The probability that MAN j would respond to 
nJ , request n. 
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I BOX 7= LEARNING 

FIGURE 3-8 
• . . 

. 

1 

■ .. 
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Box 7B Messages. The two learning strategies which can be 

associated with CNE are (1) selective coding and (2) associations 

with patterns. Marshall employed the latter in his simulation model 

of CNE, but it was found to be network-dependent. His success was 
t 

limited to only the network modeled and could not be productively 

applied to other structures. In this study, selective coding is used. 
* ■ . ‘ • 

The strategy of selective coding involves the idea that when a 

person remembers something, he does not remember, everything 

about it. Greeno (1968, p. 180) pointed out that any situation has 

r 

many properties, and usually a person notices only a few things 

about the situation he is in. A person may have learned or increased 

the habit formation,, an association between a stimulus and a response, 

but not have the whole stimulus represented in his memory. The 

memory of an association may include only a part, or an aspect, of 

the stimulus enough of its characteristics to permit a similar 

response, but not a complete representation. In network experi¬ 

ments by Raporport (Von Foerster and Zopf, 1961), selective coding 

was identified. Raporport further explained, that when one choice 

of information was reinforced by the individuals, the residual 

uncertainty was distributed equally among the remaining choices. 

To reflect these findings, a MAN identifies how frequently he sent 

each of the four messages during a trial. That which is sent most 

often is reinforced for that trial. When two or more messages are 
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equally prevalent in highest frequency, the reinforced message is 

randomly selected. Consistent with Raporport's experience, the 

probabilistic increment for message i is equally distributed, and 

decremented from the probability of selecting the other three 

messages. This is represented mathematically as follows: 

Let P (A..) = The probability that MAN j sends message i 

during trial t. If message k was most frequently 

sent during trial t, then 

Pt+1(Akj) = a+ (P‘(A ) (1 -a)) 

Pt+1(A..) = pV.) - Pt+1 (A, ,)/3. 
u ij ki 

Box 7C Channels. Using selective coding again, a person in 

these networks can readily ascertain with whom he interacted. When 

trial n was shorter than trial n-1, a person may adjudge that channel 
\ * 

from which he received the most messages as having contributed 

substantially to the improvement. Homans (1950) initially established 

the relationship that the greater the interaction between participants, 

the greater the liking or interpersonal attractiveness. Further, 

Collins and Raven (1969) report that the causal relationship between 

interpersonal attraction and communication rates are among the best- 

established propositions in social psychology. 

It is conceivable that the MAN who sent the most ta-sk-relevant 

information (data) should be most liked. However, Bales' experience 

in problem solving groups indicates that the higher the instrumental 

activities (contribution toward solution), the less the liking. Loosely 
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interpreted, the MAN who sends the most data or answers is not 

most likely to improve his interaction rates. Similarly, the model 

permits a MAN to select the highest number of messages received 

from a channel, and incremented this probabilistically. Random 

selection is employed when two or more channels are equally the 

more frequent. The remaining channels are decremented equally. 

This is symbolically expressed as follows: 

Let P (C..) = The probability that MAN j receives a message 

^ from channel i during trial t. If channel k was 

most frequently used during trial t, then 

Pt+I(C,.) = a + (Pl(C. .) (1 -o)) 
>J kj 

Pfc+1(C..) = Pf'(C..) - P14 J(c: .) /3. 
U iJ kj 

Box 7D and Box 7E Responses. Recall that in the survey con¬ 

ducted to determine initial response rates, a, substantial difference 

(0. 30) existed between data and answer response rates. An assump- 

tion that differential increments to these rates, as a result of 

learning, would not be unreasonable. Using ry ~ 0.02 as a bas^, the 

ratio of 0. 10/0.40 (the relative initial probabilities of responses) v/as 

adapted and applied to responses to answer requests. Mathemati - 

calk/, this is expressed as follows: 

Pl‘ VrS,..) = * + (P^RS,..) (1 - </)) where I -/r - 0.02, and 
U) Ju 

Ff>1(R(Pf(RS^..) (1 - '/)) where l-r,= 0.005 
2ij 2ij 

Although no empirical evidence v/as established to support 

the answer response rate (0.005), the model did not prove to be 
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substantively sensitive to this parameter. The rate 0.005 was set 

at the same ratio relative to 0.02 as the relative initial probabilities 

of responses (0.10/0.40). 

Summary 

This chapter presents a review of the relevant literature on 

the components in the simulation model of the CNE. The functional 

forms specifying the component relationships in the model are 

presented and .discussed. All the assumptions incorporated in the 

model are included within the casual modular explanation of the 

process flows. Further, a laboratory experiment was conducted 

and the results were used in the models parameters. 
* 

The searching, comparing, remembering, and altering of 

behavior sare traced through the model flow without reference to the 

programming language. Having specified the components of the 

CNE, the model is used to test hypotheses concerning the effect of 

differing networks on task productivity. The results are presented 

in Chapter Five. 

The next chapter presents a discussion of the methodology 

and statistical analysis employed in examining the simulation data. 



CHAPTER IV 

RESEARCH METHODOLOGY 

Introduction 

In the preceding two chapters, the simulation model's com¬ 

ponents and relationships were presented. The construction of the 

simulation model of a communication network, represents only one 

of the objectives of this study. The remaining objective is as 

follows: 

To investigate specific hypotheses regarding the effect 

of cumulative experience in task solving on the solution 

rates for selected communication networks. 

First, the validatiPn stage is done on the Circle network to verify 

the model's output and predictive ability. An experiment follows 

f 
\ • 

with an All-Channel network to investigate the hypotheses outlined 

in Chapter Two. To analyze the. results, regre ssion analysis was 

selected as an appropriate tool. The research methodology employed 

in this study is presented and will include the following topic areas. 

(1) the output variable 

(2) the hypotheses 

(3) the experimental design considerations 

(4) the statistical tools employed to analyze the experimental 

data 

(5) the validation procedures and the analysis of the experi¬ 

mental data. 
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Output Variable 

The objective of this portion of the study was to investigate 

the effect of cumulative task experience on the task solution rates. 
i 

The dependent variable, task solution rate, was selected for several 

reasons. The improvement of communications within a small group 

may have an impact upon organizational stability, morale, organi¬ 

zational style, and interpersonal attraction, all previously examined 

within this paradigm. ^ Empirical relationships previously established 

between a,productivity measure and the aforementioned variables 

could then be examined with additional information. It then appeared 

t 

desirable to include a productivity measure as a focus for this study. 

Second, prior investigations have demonstrated relationships 

between information distribution (Shaw, 1954), reinforcement stress 

(Lawson, 1964), opportunity to organize (Guetzkow and Dill, 1957), 

and productivity for. short periods of time. These relationships may 

be time dependent. In his examination of group problem solving 

networks, Burgess stated (p. 324), 

These solutions exhibit a substantial transition period marked 

by an acceleration in the solution rate leading to a steady 

state. Differences in this orderly progression were still 

smaller when the groups were allowed to pass through the 

acquisition period to a steady state. 

All of the previous studies cited in Chapter One have focused on one 

or more of these variables. 

1 



96 

Although this output variable is an indication of some dimen¬ 

sions of organizational effectiveness, this was not the only reason 

for its selection. This variable, was chosen to provide a link with 

the Burgess (1968) laboratory experiments. Recall that this study 

was used to partially validate the model. A simulation model must 

be validated if the experimental results generated from the model 

are to be meaningful. Van Horn (1968, p. 2) states that, "Validation 

refers to the building of an acceptable level of confidence in the 

model such that an inference about the simulated process is a 

valid inference for the actual process. " 

The three-stage validation procedure suggested by Naylor and 

Finger (1967) was employed in this study. Their final stage, the 

positive economics phase, requires a comparison of data generated 

by the model with that generated by a laboratory experiment. The 

Burgess (1968) study of communication networks is the only study 

conducted in the CNE where sufficient repetitions of a task were 

permitted, such that the aforementioned transition states in learning 

could be.clearly identified. 

It, therefore, was selected as the only benchmark against 

which the simulated results could be compared. The dependent 

variable in the Burgess study was productivity, or more specifically, 

task solution rates. 

Operationally, this dependent variable was defined, in this 
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study, as the number of time units (rounds) required to complete 

sequences of. messages such that solutions were achieved by the 

network members per trial. This solution rate, time unit's per 

solution, is computed for each successive trial. 

Independent Variable 

The independent variable in this study--number of tasks or 

. t . 
problems--can be equated to time; that is, the greater the number 

of problems, the longer the time needed to complete the experiment. 

This variable was chosen because empirical studies for particular 

CN have demonstrated its effect on the output variable. 

In preceding chapters, the relevant studies concerning 

^specific networks and productivity were presented. A review of 

the literature indicated the relationship between time spent on the 

task and productivity. In the following paragraphs a brief overview 

of the research which relates the independent to the dependent 

\ 

variable is presented. 

With the exceptions of Burgess (1968) and Shaw and Rothschild 

(1956), communication experiments have been of short duration, 
• % 

constituting at most 60 trials. With the exception of Shaw and 

Rothschild, there has been no attempt to study the developmental 

behaviors of problem solving groups for longer periods of time. 

Shaw and Rothschild studied the performance (productivity) and _ 

satisfaction trends for four-person groups working for a short 
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period each day for ten days, on fairly complex (arithmetic) problems. 

In one important sense, they helped answer questions raised about 

the temporary nature of the effects of prolonged experience on the 

behavior of subjects who have opportunities to rest between problem 

solving attempts. There is, however, another equally important 

kind of prolonged experience that groups may have. This is the 

kind in which participants work continuously for relatively long 

periods of time. 

Cohen, Bennis and Wolkon (1961) indicated that time spent in 

task solutions was related directly to productivity or rates of 

problem solving. They indicated that this relationship was statis¬ 

tically significant between Circle and Wheel networks. Further, 

this rate was associated with interpersonal and task satisfaction. 

They also indicated that learning (improvement of solution rate) . 

continued to take place in both communication networks for a con¬ 

siderably longer period than had been expected on the basis of studies 
* 

of shorter duration. This improvement was represented by pro¬ 

gressively mor'e efficient operations through time. 

Hypotheses 

It was indicated in Chapter One that an objective of this study 
s * 

was to investigate several specific hypotheses on the effect of 

learning and reinforcement during cumulative task experience upon 

solution rates. The simulation, model was constructed to provide,a 
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research vehicle to answer the following questions: 

(1) What is the effect of prolonged practice or learning on 

the network's productivity rates? 

(2) Is the rate of productivity affected by different net¬ 

works? 

To determine the effect of prolonged learning, two networks were 

evaluated, the Circle and All-Channel network. The Circle network 

is considered a two-step hierarchy, in that for a communication to 

reach any other level in the structure, it must pass through a two- 

stage procedure. The All-Channel network is a one-step hierarchy' 

similar to a Wheel network. For a communication to reach any other 

level, it has to pass through only one stage. Operationally, the two 

structures are differentiated in the simulation model by: 

(1) resetting the initial parameters for possible channels 

(P(C.j)) to constrict, or open, available paths. 

(2) permitting learning to occur over a wider range of 

channels. 

For both Circle and All-Channel networks the minimum number of 

messages required for a solution is six. Also, the minimum num¬ 

ber of rounds to reach the answer is three for both networks. It 

was expected that both structures would reach, or approximate, 

optimal efficiency given a sufficient period of time. However, as 
- "U 

mentioned earlier, the focus of empirical investigation in earlier 

studies was concerned with how soon each network reached this 

optimal level of efficiency. 
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Based upon the experimental evidence presented earlier in 

this chapter, three specific hypotheses can be formulated: 

(1) In the long run, productivity measured by.time units 

to solution for both Circle and All-Channel networks 

is equal. 

(2) Solution rates measured by solutions per trial are 

equal for both Circle and All-Channel networks. 

(3) The fewer the levels in the hierarchical structure, 

the sooner an optimal rate of productivity is reached, 

All-Channel networks reach a steady state solution 

rate in fewer cumulative solutions than Circle net¬ 

works. 

The null hypotheses for this study can be stated as follows: 

Cumulative experience in both Circle and All-Channel 

networks has no effect on productivity or solution rates 

for the respective structures. 

Experimental Design Considerations 

The objective of the experimental phase of the study was to 

systematically vary the structural configurations. An experiment 

was designed to study the effects of Circle and All-Channel 

structures on task productivity rates as a result of prolonged 

experience in task success. Because each statistic derived from a 

simulation run is a random variable, the experiments for both 

networks required replications. In experimental design terminology 

a replication of an experiment is an independent repetition, or rerun 

under as nearly identical conditions with the original run as possible 

The independent repetition implies that experimental units are 
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independent samples drawn from the population being studied. 

Employing the "Monte Carlo Technique, " the entire experiment 

(two runs) was repeated by substituting a new seed, or starting 

value, for the pseudo - random number generators incorporated in 

the simulation model. Including the replications for both networks, 

twelve experimental runs were conducted in this study. 

The length of each experimental run was 800 trials. This was 
r 

dictated by several considerations; the Ultimate aim of the experi¬ 

ment, the requirements of validating the data, and the computer 

time available. The intent of the experimentation phase of the study 

was to test specific hypotheses about prolonged experience in CNE. 

Because the model had no provision.for decreasing returns due to 

exhaustion by the participants, the length of the study had to be of 

sufficiently short duration so that this model restriction would be 

realistic. Human subjects have persevered for, at most, 1000 

trials (Burgess, 1968, p. 327). . Also, the benchmark against which 

the simulated data is compared (Burgess, 1968) was comprised of 

800 trials. 

Regression Analysis. To examine the nature of the relation¬ 

ship between the variables produced in a time series, regression 

analysis was selected. This method was chosen both to examine 

the output data and to draw conclusions about dependency relation¬ 

ships which may exist in the time paths. When an estimate of a 
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productivity rate can be made from a measure of cumulative experi- 

ence and the experience comes first chronologically, it can be used 

to predict productivity rates. This relationship may be employed' 

to predict to other situations. Regression analysis is used to 

examine this relationship. 
> 

When regression analysis, is used merely to summarize the 

i 

properties of data, the assumptions are not critical to fit data to. 

the regression equation. To draw inferences from the sampled 

data concerning the population, the assumptions become critical. 

The assumptions underlying regression analysis are as follows: 

(1) Both the independent and dependent variables are 

sampled from a bivariate, normally distributed 

population. 

(2) The experimental error terms are normally distributed. 

(3) The experimental error terms have homogeneous 

variance s. 

(4) - The experimental error terms are independently dis¬ 

tributed (error terms are not correlated). 

(5) The sets of regressor values for the independent 

variable are fixed in repeated samples. 

As a rule, the failure of an assumption affects the level of a 

statistical test. When the experimenter thinks he is testing at the 

10 per cent significance level, he may actually be testing at the 

14 per cent level. The net effect is to report significance where none 

may exist. -The existence of an independently distributed error term 
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is usually assured by randomly assigning the experimental subjects 

to the different blocks, or configurations, of the design. This 

approach cannot be used in simulation studies, as assignments are 

irrelevant. As with other simulation studies, this one will employ 

the "Monte Carlo Technique. " It can be shown that the sample 

variance, considering each, replication as an observation, is reduced 

(Conway, Johnson, and Maxwell, 1959). 

With the exception of spectral analysis, most simulation users 

have attempted to draw inferences from their data by: (l) computing 

the sample mean and variance of a run, or experimental condition, 

(2) subject these statistics to t-tests to determine if observed dif¬ 

ferences in means are statistically significant. Because simulation 

data is generally indicative of autocorrelated time series, estimates 

of statistical relationships may be substantially underestimated, and 

differences between alternatives may appear significant, when in 

fact they are not. 

i 

A conversion of the regression equation to account for auto- 

correlated error terms by using a Durban-Watson d statistic has 

been suggested (Johnson, 1963). However, this approach is in 

general, not useful, because autocorrelation coefficient estimates 

for a finite time series are themselves autocor related (Kendall and 

Stuart, 1966). 

The independent variable cannot be assumed to have properties 
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which would support normally distributed and random assumptions. 

The dependent variable, solution rate, is event-dependent, or a 

function of previous occurrences. Its distribution cannot be assumed 
4 

• \ 

to have random characteristics. Consequently, the assumptions of 

normality and common variance are not met for tests of significance. 

However, for simply fitting an equation to data, in a descriptive 

sense, meeting these assumptions is not necessary. 

This is essentially a learning model. The measure of auto¬ 

correlation from period to period is a measure of this learning. 

To remove this autocorrelation from the data to perform tests of 

statistical significance would be defeating the purpose of the model. 

In treating each run as an independent observation, tests of signi¬ 

ficance can be made, using the six observations for each network. 

Because of the size of this sample, no strong statements can be 
* 

made. Therefore, given the nature of the data, the descriptive 

analysis used below was considered to be as good an indication of 

the relationships as possible. In this case, the coefficient of 

2 
determination, r , can be employed as a measure of goodness of 

fit of the regression line. It specifies the amount of. unexplained 

error not accounted for by the regression line. 

In light of the aforementioned restrictions, the analysis of 

the output data was treated in similar fashion to Burgess' descrip¬ 

tive explanations (1968, pp. 341 -344). A discussion of these 
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methods is presented in the validation section. 

Validation 

To draw inferences from a simulation model to the real 

world, the model must demonstrate its ability to be relatively 

accurate. This is the purpose of model validation. Validation has 

been referred to as "the process of building an acceptable level of 

confidence that an inference about a simulated process is a correct, 

or valid inference about an actual process" (Van Horn, 1968). 

Although validation is an important facet of modeling, it is even 

more urgent in a socio-psychological simulation. Because such 

simulations possess low face validity, validation procedures become 

an integral part in the simulation strategy. 

Naylor and Finger's (1967) multi-stage validation approach 

was adopted in this study. Their approach requires integrating 

the methodologies of rationalism, empiricism, and positive eco¬ 

nomics. They indicate that while each methodology is necessary, 

it is by itself insufficient for validating a computer simulation 

model. Rationalism holds that a model is a system of logical 

deductions from a series of synthetic premises. Thus, the first 

stage called for the formulation of a set of postulates, or hypotheses, 

describing the behavior of the networks. These postulated were 

formed from the already acquired 'general knowledge' of CNE or 

from similar systems which have been successfully simulated. 
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The empiricism stage does not permit any postulate that cannot be 

independently verified. Consistent with their suggestion, the 

functional forms' specifying component relationships in the model 

were derived almost entirely from empirical data whenever 

possible. In Chapter Three, the related empirical evidence was 

cited for each relationship as it was sequenced through the model. 

Clearly, while the empiricism phase is a necessary step, it is not 

by itself sufficient to assure a reasonable level of verification. It 

is possible that each individual component may be well-established 

in its respective literature, but when these components are con¬ 

nected, the flow of behavior through the model may not result in an 

accurate representation of the real world. This problem is similar 

to attempts at combining theoretical constructs from different 

disciplines into a workable and verifiable theory. There have been 

few notable successes in these attempts, especially in the socio- 

psychological area (Miller, 1971). 

Therefore, the final stage in this validation procedure should 

be a test of the model's ability to conform to or fit, observed 

behavior in the real world. Failure to pass this test would cause 

at least, serious doubts on the model itself and at most, would 

destroy previously established confidence. However, this test is 

essentially a null test. If simulated data do not agree with the 

observed behavior, the model would be extremely suspect. 
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Conversely, no strong statement can be made for the validity of 

the model when this test is passed. 

Two approaches were taken in this final stage of the model's 

validation. The first was to check to the model's reliability, or 

the ability to produce, within probabilistic bounds, similar time 

paths for the output variable regardless of the sequence of pseudo¬ 

random numbers selected to produce movement in the model. A 

comparison of the correlation coefficient for the original series 

was made with every replicated run; however, these were visual 

and not statistical comparisons. If the case occurred whereby the 

model failed to pass a test of reliability, that is, the correlation 

coefficients for each replication were sizably different, it would 

indicate that the time series was highly dependent on the specific 
v 

sequence generated from each pseudo-random number. Such a 
i 

model would be again highly suspect. 

The second approach to validation was a goodness of fit test, 

comparing the simulated results with that of a laboratory experi¬ 

ment. The Burgess (1968) CNE served as a benchmark. It should 

be noted that historical verification tests only whether the model as 

a whole can reproduce real world data. This procedure will not 

provide any assurances that functional specifications in the model 

are valid. Friedman (1963) claims that the validity of a model 

depends on its predictive ability rather than the validity of model 
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assumptions.. However, Clarkson (1962, p. 34) referring to his 

experiences with simulating investment portfolio selection pro¬ 

cedures, commented that after a goodness of fit test, the problem 

of further verification is not so simple, because there is no clear 

way of testing either the functional form of the equations or estimates 

of parameters. This statement provides an additional reason for 

a multi-stage validation approach in simulation experimentation. 

Because a goodness of fit test cannot be used to validate the 

functional relationships in the model, the additional empiricism 

phase is necessary. Next, a detailed account of the validation 

procedures is presented. 

Background on Burgess Study 

In Chapter One, the Burgess CNE study (1968) was discussed. 

This long-term study investigated the identical independent and 

dependent variable employed in this study. The CNE simple 

problem was run in four man groups for 800 trials. For both 

Wheel and Circle networks, the relationship of time needed for 

solution per trial over these 800 problems was described by the 

jg 
function Y = AX . Descriptively, Burgess ascertained this fit by 

fitting his data to the following functions: 

(1) Y = A + BX (linear) 

(2) Y = A 4 B log X (logarithmic) 

(3) log Y = A + BX (exponential) 

B 
(4) Y = AX (power) 
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where Y represents the number of messages required for solution 

and X denotes the trial number. 

To determine the precision of these fits, he stated that the 

correlation coefficient (r) for each sample was highest for the 

power function. In every case, the power function best described 

2 2 
the data with an r = 0.99. No r 's were reported for the other 

equations. 

Further, Burgess found that the minimum number of 

messages for solution (a steady state) was reached for Wheel 

networks at approximately over 200 trials or problems. The Circle 

networks required over 300 trials to reach a steady state level. To 

validate more comprehensively the simulation model, not only must 

the simulated data conform to the power function, but the break 

points, or steady state achievement levels, also must conform. 

% 

t The observational technique Burgess applied to his data to 

obtain the break points, or steady levels, is somewhat suspect. 

He developed a scattergram on logarithmic graph paper. Observing 

that an apparent discontinuity occurred in the data points after 

some number of trials, he inferred that in latter trials where a 

regression line could be drawn through these points, the slope of 

that regression line would be very close to zero. By inspection, 

he observed that-there was a kink in the scattergram and proceded 

to draw two regression lines through the points on the logarithmic 
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scales which reflected this break point. The underlying assumption 

of this method suggests that an inflection point, or second derivative 

of the power function would indicate where this break occurred. 

However, for modified forms of an exponential function this 

inflection point cannot be analytically determined. A proper method 

would be to specify a rate of improvement, or slope, in the regres¬ 

sion line after which the experimenter could operationally define 

that a steady state had been achieved. A range of trials in which 

this steady state was achieved in the simulated data for both valida- 
• t 

v 

tion and experimentation was identified by operationally establishing 

a rate of improvement. Both the choice and defense of this rate 

selected are presented in the results of Validation Three in Chapter 

Five. 

Validation One: A Comparison of Original and Replicated Runs 

The severe restrictions placed on inference tests by not 

meeting the assumptions underlying regression analysis, predicated 

a descriptive analysis for consistency between runs. For the 

original run and the five replications, the coefficients A and B 

will be inspected for their respective equality. Further, the co- 

2 . 
efficient of determination, r , will be examined. This coefficient 

indicates the amount of variation in Y which can be explained by a 

given relationship of Y on X. If most of the deviations from the 

regression line can be explained by the relationship Y on X, them 
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2 - 
r should be close to +_ 1.0. Following Burgess's (1968) evalua- 

•> 

tions, these examinations are conducted in a descriptive manner. 

Validation Two: Comparison with the Burgess CNE Benchmark 

Earlier- in this chapter the results and methods employed in 

the Burgess (1968) study were presented. Overall group perfor¬ 

mance, as well as changes in performance leading to a steady state 

within restricted communication networks, were found to be very 

orderly phenomena. In each case his data were described precisely 

g 
by a simple power function of the form Y = AX . For the four man 

groups working through 800 trials, the solution rate per trial was 

fit to the above function. The conclusion drawn from this study 

was that the behavior of problem solving groups followed the same 

general power law exhibited by such diverse phenomena as simple 

sensory responses and individual learning. Because the variables 

in this simulated study are identical to those in the benchmark 

study, the simulated data were fit to the power function. To 

simplify the fitting of the output data to the previously mentioned 

functions, a logarithmic transformation was performed on two of 

the four equations. The transformations were as follows: 

(1) Y = A + BX -- log Y = A + B (log X) 

(2) Y = AXB -- log Y = log A + B log X 

2 
The coefficient of determination (r ) was observed as a measure 

of the precision of this fit. 
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Validation Three 

Comparison with Steady State Levels of Achievement 

To further verify the model's output, a comparison was made 

to match the steady state levels achieved by human subjects with 

those of the simulated data. The regression of time needed for 

solution on trial number was too gross to reveal that networks 

had reached a steady state. In order to show this, a rate was 

calculated. Specifically, the number of time units per solution 

was calculated and plotted against cumulative solutions. It was 

decided to use cumulative solutions rather than time in both the 

validation and the experiment, since the crucial variable affecting 

task performance would be experience in solving the tasks, rather 

than experience in just being in the network. This new equation 

described changes in productivity at each trial. The simulated 

data then should be described by a positively accelerated power 

function, but only up to a point. At this point there should be a 

discontinuity which marks the onset of a steady state. To identify 

• « 

this discontinuity, an initial rate of change must be calculated. The 

average rate of change for the first five trials was selected as 

that rate. When the slope o'f the regression, line reaches the pre¬ 

determined rate of change specified by the author, the break point, 

or steady state level, will have been achieved. This point will 

correspond to a value for cumulative solutions. the number of 
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trials at which this occurs should conform to those specified by the 

benchmark study. These break points are calculated for all simu¬ 

lated runs. 

Corresponding to these discontinuities, the coefficient of 

2 
determination (r ) should become smaller for each run, as these 

break points are approached. In a function which possesses 

asymptotic characteristics, the closer the asymptote is approached, 

the less the prediction can be made from the independent variable 

to the dependent variable. Specifically, the more cumulative 

solutions achieved, the less the information one has about any 

changes in solution rates. Thus, the gain in precision of the 

estimates which can be achieved after the operational steady state 

is reached should become very small. 

Experimental Studies 

It was previously mentioned that the length of the simulation 

run was 800 trials. The preceding section indicated that the com¬ 

plete laboratory study was used in the validation section of the 

study. After employing the Circle network for verification, the 

All-Channel network will be investigated for the aforementioned 

hypotheses. A descriptive analysis is used from the regression 

weights and correlation coefficients to examine the relationships 

postulated for productivity and networks. Specifically, both time 

for solution and solution rates are considered. 



Summary 

This chapter has presented a discussion of the output 

variables, the hypotheses to be tested, and the general approach, 

to experimentation in executing this simulation study. A brief 

discussion of the regression model and its descriptive use is 

presented with the primary emphasis on the underlying assumptions 

for the use of this tool. After briefly discussing the techniques 

for analysis, the validation procedures for the study are presented. 

In Chapter Five, the validation and experimental studies 

are presented and the results discussed. 



CHAPTER V 

RESULTS 

Introduction 

The development of the model and the foundation for the 

analysis of data were presented in the preceding three chapters. 

Consistent with the objectives of the study, an experiment was 

designed, and descriptive analyses were conducted, on the simu¬ 

lation'model. The null hypothesis was as follows: 

Cumulative experience, or time trials, at the task has 

no effect on the solution rates and time required for 

solution for the communication networks. 

In this chapter, the results of the experiment conducted on 
> 

the model are presented. More specifically, the following topic 

areas are presented: 

1. The Validation One results - Comparison for Consistenc 

2. The Validation Two results - Historical Validati-on of 

the Simulated Results. 

3. The Validation Three results - Comparison of Steady 

State Achievement. 

4. The results of the Experiment. 

5. A discussion of the findings. 

Validation One: Results 

The objective of the validation stage was to confirm the 

model's reliability. Reliability was previously defined as the 

ability of the model to produce consistent time paths for the output 
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variable regardless of the sequence of Pseudo-random numbers 

* 

which are used to drive the model. 

When constructing an experiment with human subjects, the 

experimentation is designed so as to reduce the variability due to 

causes which are of no interest to the researcher, or are beyond 

his control.- Experiments with simulation models do not have this 

problem. There are no sources of variability outside the experi¬ 

menter's control. 'Certain aspects of reality must be introduced by 

a probability distribution. To simulate the real world, some 

variability must be introduced into the model. These events are 

caused to occur according to a probability distribution by use of 

pseudo - random numbers. This procedure can still yield a problem 

of excessive variability (in a sense, similar to the real world 

experiments). Two particular questions are of interest. (1) Will 

the introduction of a series of pseudo-random numbers produce too 

much variability in the model's output? (2) How similar are the 

original output variable time paths to the replicated time paths? If 

there is too much variability and the time paths are not similar, it 

would suggest that the output of the simulation is highly dependent 

on a particular sequence generated by the pseudo-random number. 

I 

If the model's output is dependent upon a particular sequence, the 

model itself could be severely criticized. Excessive variability is 

2 
operationally defined here by a 2% variance between all r 's for 



117 

both original and replicated runs-. 

To answer the two questions above, the output for both the 

Circle and All-Channel networks was compared. A descriptive 

analysis of the intercept (A) and beta (B) weights for the regression 

2 
is included along with the coefficient of determination (r ). The 

results of all runs is summarized in Tables 5-1 and 5-2. 

/ 

Alpha describes the point of intercept on the dependent 

variable axis. It was expected.that these points should not exhibit 

excessive between-run variability. The alpha values for Circle 
\ 

networks, listed in Table 5-1, show the range to be from -3.977 

to -3. 398. For All-Channel networks, the values in Table 5-2 

indicate a range from -4.020 to -3.429. Further examination of 

these tables indicates that the standard error for both alpha and beta 

(deviations of the estimates from the true value) is relatively the 

same. This demonstrated additional evidence that between-run 

variability for both networks was quite small. As mentioned in 

Chapter Four, statistical inference tests were not conducted on any 

of the weights from the regression. However, for a regression 

line over 800 data points, both the original and replicated runs for 

both networks were adjudged to be reasonably consistent. 

The beta weights for these regressions yield similar results. 

Table 5-1 lists for Circle networks a range of 1.276 to 1.222. The 

range for the All-Channel networks, shown in Table 5-2 is from 
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TABLE 5-1 

REGRESSION ANALYSIS 

FOR CIRCLE NETWORKS 

Run 

Numbe r A B_ R2 

Standard 

Error of A 

Standard 

Error of B 

1 - 3. 668 1.239 0.9944 0.0248 0.0032 

2 -3. 977 1.276 . 9956 . 0227 . 0029 

3 -3. 744 1. 258 . 9966 . 0192 . 0025 

4 -3.729 1.259 ..9962 . 0202 • .0026 

5 -3.398 1.222 . 9976 . 0152 . 0020 

6 -3. 862 1. 273 . 9954 . 0229 . 0030 

\ 
TABLE 5-2 

REGRESSION ANALYSIS 

FOR ALL-CHANNEL NETWORKS 

Run Standard Standard 

Numbe r A . B_ R2 Error of A Error of B 

1 -4.020 1. 294 0.9980 0.0153 0.0020 

2 -3.250 1.193 .9918 . 0287 . 0038 

3 -3.429 1. 200 . 9940 . 0249 . 0032 

4 -3. 745 1.251 . 9940 .0259 . 0034 

5 -3. 860 1. 266 . 9984 . 0135 . 0017 

6 -3. 643 1.243 . 9934 . 0268 . 0035 
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1.294 to 1. 193. Although the estimates for beta are gross indications 

of the shape of the function, for a sample of 800 observations it 

appeared reasonable-to assume that the range of these values was 

approximately equal and relatively stable for both networks. 

The coefficient of determination is used as an estimate of 

how. well the data points fit the regression equation. It indicates 

the degree of variation from the regression line which can be 

explained by the dependent-independent- relationship. Variability 

is introduced through a pseudo - random number generator. If the 

amount of unexplained between-run variation is large, it could be 

said that this difference in variability for the output is excessive 

due to the sequence of random numbers. For both networks, 

2 
Tables 5-1 and 5-2 indicate an r of 0.99+ for all ■ twelve runs. 

This is a further demonstration of the model's ability to produce 

f t 

consistent time paths regardless of the selection of a pseudo-random 

number used to drive the model. 

Validation Two: Results 

The objective of this phase of the validation portion of the 

study was to compare the data (coefficients of determination) with 

the results of the Burgess CNE (1968). One conclusion drawn from 

that laboratory study was that productivity of problem solving groups 

Only this statistic is reported without any indication of either the 

alpha or beta, weights. 

1 



120 

(Wheel and Circle networks) in CNE can be described by a power 

R * 

function of the form Y - AX . 

Visual comparisons were made between the simulated and 

real world data for Circle networks. The coefficient of determina¬ 

tion was computed for each Circle run over the 800 trials, or 

cumulative solutions. The results are presented in Table 5-1. 

The findings in this study particularly agree with Burgess' 

conclusions. In each instance, the power function best described 

2 
the data. The r^’s, for the six runs reported, were 0. 99 + . This 

, i , 2 
is every bit as good a fit as those obtained by Bur.gess. His r 's 

for ten experiments were 0.99 using the function Y = AX^J. Evidently, 

group problem solving behavior produced by the model is as lawful 

as psychophysical phenomena; and it appears to follow the same 

general power law. For linear fits, as a comparison, the r 's 

were . 54. 

Further, as Burgess concluded, with individual learning, the 

simulated groups similarly exhibited an initial transition period 

during which their response rates steadily increased. Additionally, 

organizational patterns developed as reported by Marshall (1966). 

As observed in all network structures, a pattern of-relaying 

messages had either been achieved, or was in process, when CNE 

of short duration had ended. These patterns were reflected in the 

model by the probabilities of channel selection. In almost every 
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case, each group (run) had developed an organizational structure 

which persisted throughout the 800 trials. Also, the structures 

were substantially different for each group. 

Validation Three: Results 

Another problem investigated in the Burgess study (1968) was 

whether there are differences between the Circle and Wheel net¬ 

works in the transitional stages leading to a steady state. He 

examined the developmental behavior of these task groups to answer 

this question, as well as to provide a replication of results obtained 
, . • i 

in his fi’rst experiment. It was found that achievement of a steady 

state solution rate was reached by Wheels earlier than Circle 

networks. The concern here was that no difference in solution 

rates were observed between networks during the steady state periods. 
i • 

With contingencies of reinforcement in effect, no significant dif¬ 

ferences occurred with regard to solution rates. To determine the 

relative productivity for each network, the point at which the 

transition stage ended and the steady state level was reached was 

computed. Burgess reported that it took groups operating as Circle 

networks a little over 300 trials to reach this steady state. 

To the extent that the simulated data for Circle networks con¬ 

form to this break point, or onset of a steady state, confidence in 

the model's predictive abilities would be enhanced further. As 

previously mentioned in Chapter Four, the observational technique 



122 

employed by Burgess was not deemed satisfactory. Rather than 

estimating a point of inflection for a change in the rate of productivity, 

a rate was selected (points of inflection cannot be determined by a 

second derivative in power curves). After groups have achieved 

this rate of change operationally, a steady state condition was in 

effect. The operational definition of a steady state attained in this 

study was set at 0. 05 of 1% improvement of the solution rate 

relative to the starting conditions or initial rate. For the first five 

trials, an average was calculated, and was used as the initial pro¬ 

ductivity rate. . Once the solution rate per trial reached 0. 05 of 1% 

of the averaged first five trials, the steady state had been achieved. 

The selection of the critical rate (0.05 of 1%) was predicated 

upon the need first to choose a break point and second, to be 

* 

reasonably certain that it was small enough to assure that very little 

improvement occurred thereafter. 

If the equation employed in the second validation described 

overall productivity, the equation for this validation step describes 

change in productivity. This equation is a first order differential 

relative to Y of the first equation which takes the form: 

dY/dX = A^^B(y) ^ where dY/dX = solutions per 

1 / B 
time unit; Y = cumulative solutions; A B and (B-l)/B are 

empirically determined constants. The solution follows: 
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Y = AXB 

X - (Y/A)1/B 

dY/dX = AB(X)B_1 

= ab(y/a)(b-1)/b 

- A1* A"1+(1/B)b* Y(B-1)/B 

'= a(1/b)by(b-1)/b 

A regression was obtained for the six runs of the Circle net¬ 

work using the above function. (This equation was also used in the 

experimental phase of the study for All-Channel networks. ) 

i 

The beta weights for these regression lines indicate the slope, 

or rate of change in productivity. However, what is of concern is 

the slope, or rate of improvement, at selected cumulative solutions. 

An attempt was made to determine after how many trials, or how 

much, experience, did the rate of productivity fall to an insignificant 

level. 

A series of regressions was obtained from all six Circle runs 

by dropping earlier observations, then recording the slopes or beta 

weights for the remaining data points. Tables 5-3 through 5-8 

present a summary of these regressions. 

The critical rates for steady state achievement in Circle net¬ 

works calculated for a 0.05 of 1% based on the average of the first 

five trials and are presented in Table 5-9. First, sets of regression 

were constructed by dropping from the data base a given number of 
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TABLE 5-3 

Number 

of Trials 

REGRESSION ANALYSIS 

FOR CIRCLE NETWORK ONE 

Standard 9 
Dropped B_ Error of B 

Ct 

R 

200 0.000145 0.000010 0.2725 

250 .000126 .000011 .1941 

300 . .000103 .000013 .1170 

350 .000093 .000015 .0795 

400 ,.000092 .000018 . 0601 

500 . .000087 .000029 . 0296 

TABLE 5-4 

REGRESSION ANALYSIS 

FOR CIRCLE NETWORK TWO 

* >t 

Number 

of Trials 

Dropped 

9 * 

B 

Standard 

Error of B ai 

200 0.000165 0.000010 0.3122 

250 .000157 .000012 . 2543 

300 .000162 .000013 . 2324 

350 .000156 .000016 .1816 

400 .000145 .000019 . 1276 
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TABLE 5-5 

REGRESSION ANALYSIS 

FOR CIRCLE NETWORK THREE 

Number 

of Trials 

Dropped B_ 

Standard 

Error of B 
2 

R 

200 0.000132 0.000010 0.2067 

2 50 .000131 .000012 . 1907 

300 .000122 .000013 . 1429 

350 .000123 .000016 .1158 

400 .000115 .000020 . 0785 

TABLE 5-6 

- 

REGRESSION ANALYSIS 

FOR CIRCLE NETWORK FOUR 

Number 

of Trials 

Dropped B 

Standard 

Error of B R2 

200 0.000105 0.000010 0.1637 

250 .000102 .000011 . 1335 

300 .000097 .000013 .1016 

350 .000084 .000015 . 0647 

400 .000094 .000018 . 0631 
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TABLE 5-7 

REGRESSION ANALYSIS 

FOR CIRCLE NETWORK FIVE 

Numbe r 

of T rials 

Dropped B_ 

200 0.000139 

250 .000130 

300 .000124 

350 .000130 

400 .000122 

Standard 
2 

Error of B R 

0.000010 0.2344 

.000012 . 1827 

.000014 . 1468 

.000016 . 1302 

.000019 . 0953 

TABLE 5-8 

REGRESSION ANALYSIS 

FOR CIRCLE NETWORK SIX 

Number 

of Trials 

Dropped B 

Standard 

Error of B 

2 
R 

200 0.000123 0.000010 0.2081 

250 .000111 .000011 . 1537 

300 .000111 .000013 . 1259 

350 .000109 .000015 . 1022 

400 .000099 .000018 . 0928 



initial trials. Then, by comparing the critical rates of productivity 

for each Circle run in Table 5-9 with its respective set of regressions 

in Tables 5-3 through 5-8, the following observations can be made. 

For runs 1, 3, and 5, the slope of the regression lines are approxi¬ 

mately equal to the critical rate at 300 cumulative solutions, or 

trials. For run 2 this equivalence occurs slightly before 250 

cumulative solutions, and just after 200 trials for run 4. The last 

comparison for run 6 indicates that the break occurs at slightly 

over 300 trials. 

TABLE 5-9 

CRITICAL RATES FOR STEADY STATE 

ACHIEVEMENT IN CIRCLE NETWORKS 

Run 

Number 

Average Rounds 

First Five Trials 

Critical 

Rate 

1 18.0 0.000111 

2 12.8 .000156 

3 1 6. 4 .000122 

4 19. 2 .000104 

5 16. 1 .000124 

6 18.4 .000108 
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These beta weights could not be statistically tested for the 

reasons mentioned in Chapter Four. However, these observations 
% 

tended to reassert that the model was reasonably accurate in deter¬ 

mining equivalent breaking points. Although the discontinuities 
s 

described by Burgess did not occur after the identical number of 

cumulative solutions in every case, the majority of the simulated 

runs did break at about 300. The range of break points for the 

other runs leads the author to assume a mean value for all runs 

at slightly under 300 cumulative solutions. 

Another important point of this validation section was to 

establish a range of cumulative solutions in which discontinuities 

in productivity rates did occur; for while there may be no ultimate 

differences in solution rates for different networks, it has been 

suggested (Burgess, 1968; Cohen et al. 1961) that there are some 

initial differences between networks. Identifying a range of cumula¬ 

tive solutions for Circle networks at which discontinuities occur in 

improvement, provides a measure, or benchmark, against which 
- 

other networks can be compared. A contrast between All-Channel 

and Circle networks, made in the experimental phase of this study 

is to identify the different transition stages based on the power 

curve. 

An examination of the coefficients of determination for the 

f 

Circle runs (see Tables 5-3 through 5-8) suggests there is more 

variability in productivity the greater the experience. However, 
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as more earlier cumulative solutions are dropped, the results 

produced by the regression line are, in a sense, caused by losing 

part of the curve in the power function. In this case, .another 

interpretation is required. Using the linear case, Y = A + BX, 

to explain what occurred, as more, earlier cumulative solutions 

were dropped, the constraints on the regression line began to 

approach the condition where A = Y and B = 0. Therefore, all data 

points remain as unexplained deviations. Hence, a poor fit, or a 

large amount of variation, not explained by the regression remains. 

The range of these equidistant data points is also important. In 

the output data, the range of points is from three to four. Three 

rounds is the optimal number of Circle groups. It is expected 

2 2 
then, that the smaller the r >s, or as r approaches zero, the 

better the goodness of fit. This means that the greater the experience 

in task solutions, the greater the expectation that the coefficients of 

determination will become smaller. The regression lines for all 

Circle runs indicate this case to be in effect. 
*. * * 

Overall, the validation studies increase the face validity of the 

simulation model. This is an important step in sociopsychological 

simulations as these models possess low face Validity. Because 

these models are constructed without the benefit of a general 

analytical model (such as queueing models which’possess high face 

validity), a validation phase is an absolute requirement. 
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A caveat should be tendered. Evidence that the model's out¬ 

put agrees with a given benchmark study does not mean that under 

different, experimental conditions the model would be a valid rep¬ 

resentation of the real world. Nevertheless, to the extent that the 

model successfully passes a series of validation requirements, the 

investigator is more confident in the model's predictive abilities. 

In the next section, the results of the experimentation phase of the 

study are presented. 

Experiment: Results 

Recall from the previous chapter that the experimental phase 

of this study is based upon measures of productivity for All-Channel 

networks. Two sets of regression analyses were conducted on the 

All-Channel data. Comparisons were then made to the data for 

Circle networks. First, regression was applied to 8*00 trials for 

the All-Channel network by regressing time units per solution on 

cumulative solutions. Second, regression was conducted on the 
. i 

rates of solution on cumulative solutions at selected levels of task 

experience. The findings on the output variable from the first 

series of regressions are presented, followed by the analysis on the 

solution rates. 

Findings on Time to Solution. In Table 5-2 the alpha and beta 

weights are presented with the coefficients of determination for all 

six runs over 800 trials for All-Channel networks. The values for 
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r are to read as a percentage. The functional equations used to 

fit the data are similar to those used by Burgess (1968), and • 

previously employed in the validation phase of this study. The 

significant findings may be summarized in the following manner. 

1. The time to solution per trial for All-Channel networks 

can be best described by the function Y = AX®. 

2. As with Circle networks, the All-Channel groups reached 

an optimal level of performance for the structure. 

3. Similar to individual learning, All-Channel groups 

exhibited an initial transition period during which their 

response rates steadily increased until a steady state 

was achieved. 

Findings on productivity rates. This section presents the 

results of a series of regressions used to determine discontinuities 

in productivity rates. Employing the same method of dropping data 
* 

points used in Validation Three, alpha and beta weights with the 

coefficients of determination for the six All-Channel runs are 

presented in Tables 5-10 through 5-15. 

To adjudge the relative productivity and achievement of a 

steady state the critical rates for this network were computed. 

Similar to the method employed for Circle networks, an average 

for the first five trials was used as a base to determine the point 

at which change in solution rates fell to 0. 05 of 1%. These results 

are presented in Table 5-1 6. 
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REGRESSION ANALYSIS 

FOR ALL-CHANNEL NETWORKS 

TABLE 

All-Channel 1 

Number 

of Trials 

Dropped B 

200 0.000133 

250 .000126 

300 .000107 

350 .000114 

400 .000093 

■ 

TABLE 

All-Channel 2 

Number 

of Trials 

Dropped B 

200 0..000154 

250 .000136 

300 .000128 

350 .000115 

5-10 

Standard 

Error of B R2 

0.000011 0.2024 

.000012 . 1577 

.000014 . 1016 

.000017 . 0941 

.000020 . 0585 

5-11 

Standard 7 
Error of B R2 

0.000011 0.2424 

.000013 .1734 

. 000015. . 1 321 

.000017 . 0880 
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TABLE 5-12 

All-Channel 3 

Number 

of Trials 

Dropped B 

Standard 

Error of B a2 

200 0.000152 0.000011 0.2428 

250 .000141 .000013 . 1857 

300 .000145 .000015 .1616 

350 .000144 .000017 . 1337 

TABLE 5-13 

All-Channel 4 

Numbe r 

of Trials 

Dropped B 
Standard 

Error of B a2 

• 200 0.000157 0.000010 0.2917 

250 .000147 .000012 . 2303 

300 .000138 .000014 . 1726 

350 .000122 .000016 . 1179 



.134 

TABLE 5-14 

All-Channel 5 

Number 

of Trials 

Dropped B 

Standard 

Error of B 
2 

R 

200 0.000140 0;0001 1 0.2247 

250 .000137 .000012 . 1848 

300 .000129 .000014 . 1419 

350 .000113 .000017 . 0926 

TABLE 5-15 

All-Channel 6 

Number 

of Trials 

Dropped B_ 

Standard 

Error of B 
2 

R 

200 0.000121 0.000011 0.1799 

250 .000112 .000012 . 1 362 

300 

% 

.000097 .000014 . 0877 

350 .. 000095 .000016 . 0699 
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TABLE 5-16 

CRITICAL RATES FOR STEADY STATE 

ACHIEVEMENT FOR ALL-CHANNEL NETWORKS 

Run 

Number 

Average Rounds 

First Five Trials 

Critical 

Rate 

1 16.0 0.000125 

2 14. 1 • , .000142 

• , 3 12. 6 .000159 

4 12. 8 .000156 

5 , 14. 2 .000141 

• 6 13. 1 .000153 

A comparison'of Table 5-1 6 with the Tables for each respective 

All-Channel run indicates the discontinuity in transition stages for 

these groups to occur between 200 and 250 trials, probably some¬ 

what closer to 200 cumulative solutions. For runs 3 and 6 the onset 

of a steady state occurred prior to 200 trials. At approximately 

200 cumulative solutions, the critical rate was achieved in runs 

4 and 5. Run 1 stabilized at 250 trials and run 2 between 200 and 

250 trials. The se-findings maybe summarized as follows: 

1. All-Channel networks achieve a steady state solution rate 

at slightly over ,200 cumulative solutions. 

2. The onset of a steady state for solution rates in All- 

Channel networks occurs before Circle networks. 
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Discussion of Findings 

The findings in this study tend to support the three hypotheses 

which were formally stated in the previous chapter. The hypotheses 

are as follows: 

1. In the long run, productivity measured by time units to 

solution for both Circle and All - Channel networks are 

similar. 

2. Solution rates measured by solutions per trial are 

similar for both Circle and All-Channel networks, in 

the long run. 

3. The fewer the levels of hierarchical structure, the sooner 
• ' v 

an optimal rate of productivity is reached. All-Channel 

networks reach a steady state solution rate in fewer 

cumulative solutions than Circle networks. 

The first hypothesis was clearly supported by the findings in 
« . , * 

this study. Overall, the level of productivity in problem solving for 

both networks approached and maintained the minimum time (in 

rounds) required to complete successive tasks. There were no dif¬ 

ferences in these times, as both networks used three or four 

message opportunities after long run experience. 

The second hypothesis was also supported by the findings. 

The solution rates achieved in the long run for both Circle and All- 

Channel networks were the same. Between 0. 33 and 0.25 solutions 

per trial were recorded for each network in all replicated runs after 

substantial experience. 

The third hypothesis was clearly supported by the findings of 
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this study. Circle networks, which are two step hierarchies, 

require a minimum of two relays to reach any other member of the 
J 

network. These networks- took longer to reach a steady state solu¬ 

tion rate, approximately 300 trials. In contrast, All-Channel net¬ 

works, which are one step hierarchies and require one relay of 
A » 

messages to reach any other group member, achieved a steady state 

solution rate earlier than Circle networks. They achieved this 

solution rate at slightly more than 200 cumulative problems. 

Groups in the All-Channel networks will solve problems with fewer 

communications, and reach minimum times for solution before the 

two step hierarchy. * 

In summary, group problem solving behavior exhibited a sub¬ 

stantial transition period evidenced by an acceleration in the solution 

rate leading to a steady state. Contingencies of reinforcement 

permitted both networks to achieve and maintain these steady state 

periods. Additionally, the networks differed throughout the 

transition periods: the Circle performed initially at a lower rate 

than the All-Channel; it reached a steady state somewhat later than 

the All-Channel-and it took the Circle substantially longer than the 

All-Channel to reach optimum organization. These observations 

are based on a rough comparison on the ranges of break points in 

transition states, or achievement of steady states, between the two 

networks. 
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A discussion of these findings relative to alternative explana¬ 

tions found in the group problem solving literature follows, and 

will include (1) the nature of the task, (2) learning and information 

exchange patterns, and (3) opportunities to organize. 

Some discrepancies in performance between Circle and All- 

Channel networks were discussed from an evaluation of Table 2-1. 

For the simple task, three All-Channel networks were not as produc¬ 

tive as Circles or Wheels. However, nine All-Channels were 

faster than the one-step hierarchies. Separating these findings by 

the task used in each study still does not explain these differences. 

Upon examining the results of this study, it can be seen that there 

was a gradual yet steady acceleration in .solution rates. Eventually, 

all groups for each network reached a steady state. Consequently, 

one must question the generalizability of the findings from previous 

investigations, particularly since the maximum number of solutions 

before this was 60. If it took this long to reach a steady-state with 

simple problems, the findings from studies incorporating complex 

problems should be especially questionable. One would expect the 

attainment of a steady state in those circumstances to be altered 

drastically. These results strongly suggest that to compare properly 

the effects of communication structures, a group should have enough 

experience as an operating group to achieve optimal performance.. 

Differences may have existed in CNE of short duration using 
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the simple problem; however, these may not have been significant 

differences when compared, to cumulative experiences of longer 

duration. The output data from the simulation did indicate that 

one Circle group was initially faster than some of the All-Channel 

groups; nevertheless, that one group did not achieve a steady state 

solution rate until 250 trials. Thus, some previous findings for 

the differences in initial rates of performance may have been tran¬ 

sitory. 

One final point should be made: Steady states and optimal 

organization may vary independently of one another. For example, 

a group may reach a steady state that fails to employ optimal organi 

zation, as was found to be the case with one group. Likewise, a 

group can attain an optimal organization before reaching a steady 

state, as was the case for a time with three groups. 

The findings of this study argue for the design of socio- 

psychological experiments to permit the observation and analysis 

of the entire developmental histories of groups from their transition 

periods to their steady state periods. The findings also suggest 

that one important variable which must be included to explore 

properly the effects of various communication networks and 

possibly social structures in general is learning. 

One conclusion which can be drawn from previously asserted 

differences in solution rates between communication structures, in 
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which there were no physical limitations favoring one network over 

a no the r, is they were a function of experimental artifacts. Had previous 

experimenters included reinforcement contingent upon behavior, 

and had they observed their experimental groups over sufficient 

time periods, the collection of a vast array of contradictory findings 

may have been avoided. 

The simulation data suggest that a s'teady state, at least within 

the operational limits, may not be some biological limit, but rather 

an equilibrium--a dynamic equilibrium--based on a balance between 

energy output and reinforcement input. What psychologists have 

learned about schedules of reinforcement may be of major impor¬ 

tance here (Ferster and Skinner, 1957). Laboratory investigations 

have repeatedly demonstrated that variable reinforcement schedules 

are superior to fixed schedules in sustaining performance. How¬ 

ever, as Egerman (1966) stated, in group situations a continuous 

reinforcement schedule may be superior. The findings in this 

study would have been affected if variable schedules had been 

employed. Transition stages would have been longer and the main¬ 

tenance of a steady state may have been disrupted. The results of 

r- 

both the validation and experimentation phases of this study support 

Egerman's contention. 

In Chapter One, it was suggested that individual learning 

accounted for differences in performance between networks of 
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dichotomous hierarchies. Burgess' study found that Wheel networks 

achieved optimal organization sooner than Circles. To account for 

this, it was suggested that productivity differences for Circle groups 

could be attributed to more complex sets of stimuli (having to compare 

messages and channels for two or more members rather than one). 

It would appear that for All-Channel networks the sets of stimuli 

would be even greater than those for Circles. This is not the case 

in both laboratory experiments and the simulated data. While it is 

true that in most social groups all members may communicate with 

all others, making the group similar to a totally connected network, 

\ v ' 

it has been shown (Miller, 1971) that the actual working structure of 

totally connected groups in network studies often involves only 

certain channels, making it similar to one of the other more limited 

networks. Thus, it is conceivable that All-Channel networks have 

the option to develop a structure similar to Wheels. That is, mem¬ 

bers may develop such that one member becomes the solver and 

receives information from all other channels. It is conceivable for 

an All-Channel network to behave as if it were a Wheel. When and 

if this situation occurs, it would be expected that their performance 

would be identical to Wheels. 

The real world data from Burgess' experiments indicated that 

Wheels achieved a steady state solution rate at'approximately 200 

trials. Contrasted to the simulation data for All-Channel networks, 
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the onset of tliese states occurred at about the same time in cumula¬ 

tive experience (slightly over 200 trials). More conclusively, three 

of the All-Channel networks in this study organized such that their 

channels of communication approached and resembled those of a 

Wheel network. 

Even in the earliest trials for both networks used in this study, 

performance was better than random. As the number of trials 

increased, the number of messages and time required in trials 

decreased, the .amount varying from All-Channels, which improved 

fastest, to Circles which improved more slowly. The apparently 

local rational behavior of individual members, the reinforcement 

of successful behaviors, and the topological properties of the net¬ 

works seemed to account for the>se differences. The curves of 

/ 

group improvement were often, but not always, smooth and slow. 

On no occasion did one or two successive minimum solution times 

alter performance from few perfect solutions to continual minimum 

times. The resultant information exchange patterns continually 

produced output which could be described by the biological growth 

B 
function Y = AX . 

From the evidence produced in this study, it appears that 

when learning-and the effects of reinforcement-are considered and 

included in an experimental situation, any network could achieve 

performance rates which would be similar. The predictive factors 

would be length of cumulative experience and the structural 
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restrictions of the network. 

In a series of papers, Guetzkow and his associates have taken 

off on a somewhat different tack from the original Bavelas-Leavitt 

studies (Guetzkow, I960; Guetzkow and Dill, 1957; Guetzkow.and 

Simon, 1955). Guetzkow and Simon argue (1 955, pp. 233-234) 

. . . that a sharp distinction may be made between: (a) 

the effects of communication restrictions on performance 

of the operating task; and (b) effects of the restrictions 

upon a group's ability to organize itself for such a per¬ 

formance. That is, instead of regarding the group's 

problem as unitary, it appears essential to separate the 

operating or substantive task from the organization or 

procedural problem. 

The major Guetzkow hypothesis, then, is that if groups are able to 

achieve a satisfactory interpersonal organization, there will be no 

differences in the amount of time required to solve the Leavitt task. 

His primary method used to investigate the hypothesis was to per¬ 

mit intertrial organizational types of communication. Refuting 

both Guetzkow's hypothesis and supportive findings, Schein (1958) 

employed a similar experimental paradigm and reported that efficiency 

preceded organization. The ensuing comparisons of this phenomenon 

concluded with Shaw's criticism (1964, pp. 134-135) that support 

for the Guetzkow hypothesis was correlational. Defining organization 

as an established pattern of channel use, the findings of this study 

tend to support Schein's observations that efficiency precedes organi¬ 

zation. For all simulated runs, communication patterns between 
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channels did not stabilize until efficiency had been established. 

Although it is possible that organization could stabilize before 

efficiency, minimum solution rates would not be achieved. 

Reinforcement was a key variable in the model. Stable 

organization appeared after efficiency had been achieved. 



CHAPTER VI 

SUMMARY 

Introduction 

The purposes of this study were: 

1. To determine the feasibility and desirability of the 

simulation methodology for the study of socio- 

psychological phenomena in group structure. 

2. To investigate the rates of productivity for selected 

communication networks. 

To accomplish these ends, first, a simulation model of indi¬ 

vidual behavior in communication networks was constructed. It 

was derived from and composed of existing propositions from 

• t . ~ 

learning theory, psychological theory, and the communication net¬ 

works experiments and caused these to interact. The propositions 

of psychological theory deal with the behavior of individuals and the 

conditions of equilibrium in the group. The nature of the model and 

the networks' paradigm permitted equilibrium states to be a function 

of the summation of individual behaviors. In these limited social 

conditions, these propositions consider behavior as an exchange of 

information between persons. The differences in the rates of com¬ 

munication are explained in terms of interaction rates and inter¬ 

personal liking. The relevant theory and empirical findings that 

were used in the construction of the simulation model were presented 

in Chapter Three. 
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Next, the experimentation phase of the study was conducted. 

The two phase program included a validation and experimental study. 

The need to validate models has been discussed previously. Valida¬ 

tion is a process which enables the researcher to develop confidence 

in the ability of the model to predict the behavior of the real world. 

In this study, the Naylor and Finger (1967) multi-stage validation 

procedure was employed. In the construction of the model, the 

empiricism stage of this procedure was evident. The functional forms 

specifying the model’s component interrelationships were derived 

almost solely from empirical evidence. Data from laboratory 

studies were used to determine the proper functional specifications 

and the parameter values for these specified relationships. Further, 

in one instance, the parameter values necessary for the model's 

operation were unavailable in the group problem solving literature. 

An experiment was conducted by the author to secure the relevant 

data required to establish these necessary parameters. The final 

stage of the formal validation section of the study included: (1) the 

testing of the model's reliability and (2) the comparison of the 

conformity between the output of the simulation model and the real 

world data. In Chapter Five, it was noted that functions fitted to 

Parameters are variables in the model which are not subject to 

experimentation. An example of a parameter is the matrix P(C..) 

denoting the initial probabilities for selecting channels. (See 

Chapter Three). 

1 
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the replicated data indicated that the model is reliable; that is, the 

model's output is independent of the particular sequence of random 

numbers used.to drive the model. Next, the model's output was 

compared to the real world for "goodness of fit. " The Burgess 

experiments (1968) were the benchmark studies. Although the simu¬ 

lated results did not precisely replicate the findings, the data in 

general did agree and conform to the Burgess laboratory results. 

The model does appear to be a reasonably valid representation of 

the real world. 

Another important function in the model's operation, was the 

inclusion of a linear learning model as suggested by Bush and 

Mosteller (1955). This learning function was used to alter the 

selections of behavior (message and channel selections). Its adoption 

was consistent with experimental evidence in the literature (Luce, 
t 

I960). However, the base rate of change alpha was set at two per 

cent by extrapolation into the structural paradigm. To determine 

the model's sensitivity to an incorrect specification for this base 

rate, two runs were made generating time paths for (1) eliminating 

the learning function and (2) changing the base rate to five per cent. 

An initial visual comparison of not including the learning function 

indicated that a linear function could describe the output, and 

deviations from this linear function would be as great at the end of 

800 trials as it was during the first 100 trials. Additionally, the 
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slope of the data points indicated that no improvement in solution 

rates had been achieved. 

Changing the base rate to five per cent produced a time path 

which clearly resembled a power' function. However, the rate of 

change appeared to be a direct function of the initial rate. It was 

concluded that a selection of a base rate different than two per 

cent would affect the output only in the determination of the onset of 

a steady state. The relationship of these steady states between 

networks would still remain constant. This tended to increase the 

author's confidence in the model. In summary, the validation phase 

led to increased confidence in the model. 

Conclusions from the Experimental Phase of the Study 

The findings on the productivity variable indicate that, in the 

long run, the fewer the levels of hierarchy in communication networks, 

the sooner optimal levels of productivity are achieved. Jt appears 

from a visual comparison that the All-Channel and Wheel networks 

reach more efficient task performance levels sooner than Circle 

networks. Also, the questions about productivity investigated by 

previous studies have been premature in their findings. 1 he data 

produced in this study question the exclusion, in earlier studies, of 

l 

the long run effects of learning and reinforcement in CNE. 

'! he findings on time to solution for the networks studied 

indicate that transition stages are evident for both Circle and All- 
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Channel networks. Further, the transition stage is of shorter 

duration for All-Channel networks. Minimal times to solution are 

achieved sooner by the lower level hierarchical networks. 

The findings on the solution rates indicate a substantial dif¬ 

ference in performance between networks characterized by single 

and multiple levels'of hierarchy. Optimal solution rates are 

reached sooner under All-Channel networks than Circle networks. 

This finding partially supports the Burgess (1968) hypothesis that 

Wheels achieve maximum solution rates sooner than Circles. Only 

during long-term experimental conditions--recognizing and employing 

learning and reinforcement--do these findings become evident. 

The results of the total replications and experiment indicate 

that the.behavior exhibited in communication networks is a very 

lawful phenomenon which can be described precisely by a power 

B 
function of the form Y = AX . Additionally, the communication 

structure affects the behavior of groups indirectly, by either handi¬ 

capping or facilitating the group members in their attempts to 

organize themselves for efficient task performance. There is, for 

example, a difference in the networks with regard to the time it 

takes to reach a steady state. 

In this connection, certain structural characteristics stand out. 

The Circle network produces a communication pattern, which 

besides requiring a relay system of some sort for information 
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transferral, permits the group members to communicate with their 

respective "neighbors11. Such a structure increases the possibility 

of duplicate and non-task behavior. In the absence of behavior 

consequences in the real world, this is precisely what happens. 

Although it would seem that this type of duplication would be more 

prevalent in All-Channel networks, both the evidence in real world 

experiments- and the simulated data demonstrate that systems of 

relaying information do not develop but direct communication 

among all members develops. 

Possible Future Research 

Future work on the model can take several directions. The 

two classes these directions may take are (1) changes in the model, 

r 

and (2) further work with the present model. Suggestions for 

changes in the model are presented first. 

Before adding additional complexity to the model, an attempt 

should be made to reduce the present complexity. The purpose of 

modeling may be defeated by adding additional complexity. The 

model may become too complex to be understood. Dutton and 
/ 

Starbuch (1971) caution model builders that the purpose of modeling 

is to be able to examine the real world through the use of a simplified 

model of the proce ss --such that the model is complicated enough to 

deal with reality, but not so complicated that an understanding of 

reality is impeded. 
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Sensitivity analysis is used to reduce the complexity of the 

model's specifications. It indicates the changes in output resulting 

from changes in the model. If changes in the model do not affect 

the output, then the model may be simplified. Some suggested 

changes in the.model may be (1) the replacement of values generated 

by a probability distribution with one or two parameters, or (2) 

elimination of some model components. An example of the former 

approach may be found in response to requests. In Chapter Three 

the response to requests was partially determined by the value of a 

random variable. (See Explanation of RNS .. ) The determination 

of responses was also a function of prior experience. Rather than 

permitting changes in this probability distribution’to occur with 

experience, a parameter value may be substituted such that the 

variance within an experimental run may be reduced. 

In the latter approach, simplification of the model is accom¬ 

plished by eliminating component relationships. For example: the 

■correction factor, V , used to reduce sending data messages through 
r 

the same channel during a trial could be eliminated completely. 

Model construction calls for the general principle of economy; 

that is, if a simple explanation will do, it is unnecessary to seek a 

complex one. Gnce the present complexity of the model has been 

reduced, there are several approaches to increasing the scope of 

this study by changing the model. 
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In this study, one simple task was employed. It has been sug¬ 

gested that more complex tasks (see Shaw, 1964) produced different 

results for CNE. Although the model would require substantial 

modifications to adapt to the complex problem described in Chapter 

Two, it is possible to adapt the current model to a series of simple 

tasks. By complicating the total task such that successful perfor¬ 

mance would require a group to solve two or more stages in a 

complex simple problem would achieve this conversion. Thus, 
* 

t 

without changing the model, the effects of learning and reinforce¬ 

ment can be investigated for various network's productivity. Tasks 

of this nature are commonly found in real world situations. 

Another modification which can be made is to remove restric¬ 

tions for transfer of information. Currently, the model requires 

transactions for all members to take place at one time. Most CNE 
/ 

# 

using simple problems did not have this restriction. Random 

selection of a network member to initiate information transferral 

one or more times during a trial can be included within the model. 

This procedure would result in unequal interaction rates, and should 

cause emergent patterns of organization to take form more quickly. 

One possible refinement in the model is to increase the size 

of the network membership beyond the present four members. 

Increasing the size of the group requires no changes in the model's 

interrelationships. The range and domain for the arrays tracking 
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the solution progress will have to be enlarged along with the 

parameter values for selecting messages and channels (P(A ) and 
ij 

P(C..)). However, the communications patterns within the group 
* 

may cause problems. Morrissette and Vannoy (1966) pointed out 

that the symbol-identification task, originally developed for the ' 

study of a five-man group, cannot be used to study larger size 

groups without substantially changing its difficulty by some unknown 

degree. Further, McWhinney (1964) attempted to increase the size 

of the communication network in his simulation study. His findings 

j * , 

were in contradiction to the accepted view that the opening of com¬ 

munication channels provides too much complication for effective 

group learning. His runs with larger simulated groups pointed to a 

different learning problem which would face the larger real group. 

The variation in performance between smaller and larger groups 

does not increase at the same rate. Thus, as group size increases, 

the percentage improvement diminishes, weakening the connection 

between adopting an appropriate organization and selection behaviors. 

It was suggested that the probable fault lay in permitting the 

simulated subjects equal propensity to generate actions. In future 

studies this could be corrected by introducing a' J distribution of 

\ 
initiations of actions such as Stephan and Mischler (1952) have 

observed in group behavior. 
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In this study, no attempt was made to interfere with the 

operation of the networks in mid-run or to change the composition 

of the groups. To determine if structural constraints are solely 

responsible for improvement or changes in solution rates, the 

0 

network can be changed after some period of time in the task setting. 

For example, at the beginning of a problem session, a group can be 

arranged as a Circle network, then changed to an All-Channel net¬ 

work. It is expected that an immediate deterioration in performance 

will result after which the variability in the group's behavior should 

be reduced. If this is the case, structural constraints can be viewed 

as the determinant of productivity. Combinations of changes can be 

tried in any sequence. The minor change in the model to permit this 

investigation would require only a change in the probabilities for 

channel selection (P(C..)). This probability distribution should be. 
ij 

set equal to the initial conditions for the network to which the change 

is to be made. 

A variation on the above recommendation would be to permit 

one group member to leave the network. No provisions for member 

entrance and exit from the network were included in this study. 

A further refinement in the model is to include turnover. In the 

real world, this condition may be prevalent. To observe changes 

in productivity as a result of turnover, the model can accommodate 

this option at any time be resetting the probability distributions for 
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one or more network members to the initial conditions. By examin¬ 

ing the behavior of the group before and after an individual leaves the 

network, the effects of disruption due to turnover could be analyzed. 

Weick (1969) suggests that the behavior of any group should 

be examined in the context of its organizational setting. An 

ambitious goal of future research is to provider communications 

network with an organization setting. Weick stated that an organi- 

. . - - * ' ' a 

zation may be defined as a group of groups. It appears reasonable 

to arrange several communication networks as an organization by 
. • t 

connecting them such that the solution of a task is g roup - dependent. 

This process would be very much like the two or more stage task 

* 

for one network but may require interactions not yet specified in 

the model. By developing an organizational model, the effects of 

varying combinations of hierarchical networks on productivity-could 

be examined. Ultimately, the objective of this research is to con¬ 

tribute to behavioral theories of organization which are concerned 

with information and communication transferral. 

Summary 

The first objective of this study was to demonstrate the 

feasibility and desirability of the computer simulation approach to 

socio-psychological research. The feasibility of the computer 

simulation approach was demonstrated by the construction of a model 

of the communication networks which successfully passed a number 



156 

of validation requirements. The desirability of this approach was 

demonstrated by the ease of experimentation on the model. As an 

experimental tool, the computer simulation model can be mani¬ 

pulated in many ways. Further evidence of the desirability and 

versatility of the simulation approach v/as offered in the section on 

future research. 

The validation phase in socio-psychological simulations v/as 

discussed. It should be clear that the need to validate should 

influence the entire research effort. In Chapter Four, it was 

indicated that the choice of the output variables v/as dictated by 

those required for the validation phase. Due to the significance of 

verification and validation needs in simulation studies, every 

stage of planning for these experiments should be affected by these 

require m e n t s. 

The results of the experimental phase of the study support 

the hypothesis that, in the long run, All-Channel networks achieve 

equal rates of productivity as do Circle networks. Further, these 

rates are reached sooner by lower level hierarchies such as the 

All-Channel network. Lastly, the behavior of tash solution within 

these corn rn uni cation networks can no described by the general 

B 
power function Y = AX . 

V/ithin the limitations cited In Chapter One, the computer 

simulation of son o-psycuoJ og. cal systems v/as shown to be a 
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desirable and feasible approach. However, several problems still 

exist; validation and data analysis are the most persistent. To 

realize the full potential of the 'computer simulation approach, 

further improvements in statistical methodology must be made. 
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APPENDIX A 

COMPUTER PROGRAM OF SIMULATION MODEL 

This appendix contains the computerized form of the simulation 

r 

model. ' The program was written in Fortran IV for a CDC 3300. 
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OS3 FORTRAN VERSION 3.1.0 04/06/73 0158 

DEFINE COMMON 
COMMON TMCLK(5),ANVEC<5,4) ,LSTRND1(4,4),LQ(4>,ME MMAT(4,4) ,MEVEC<4, 

J4> ,INMATSN(6,4,5> ,FLO(2,2),LSTRND2(4,4>,INMATRC<5,4,5) ,CUMANS(4) , 
$ANSHL0(5,4),LE0(4),ITEST(2,3),0ATASNT(4,4),0SN0VEC(4),0UT,CUMSIST(6 
%,4,5) ,CUMRCO (5,4,5) ,IHLO(4) ,IPKMAN(4,3),ALPHA,CUMATSN(6,4,5) , 
$CUMATRC(5,4,5),NEANS1(2,4,4) ,NEANS2(2,4,4) ,KTEST (11,4) , 
JKNOW ANS (4,4) , OATRTRN(2,4,2),REGHLO (4,2),KWAIT1(4,2) ,KWAIT2(4> 

REAL MEMMAT 

REAL MEVEC 
REAL INMATSN 
REAL INMATRC 
INTEGER OUT 
END 
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PROGRAM MAIN 

THIS IS CIRCLE (WITH OATRTRN,REQHLO)LEARNEO RETURNS 
TO REQUESTS USING -3-16-73 
INCLUDE COMMON 
COMMON TMCLK (5) ,ANVEC(5,4) ,LSTRNC1(4,4) ,LO (4) , ME MMAT (4,4),MEVEC ( 4, 

5 4) ,INMATSN(6,4,5),FLQ (2,2) ,LSTRN02(4,4),INMATRC(5,4,5) ,CUMANS(4) , 
t ANSHLO (5,4) , LEO (.4) , I TEST (2,3) , OATASN-T (4,4) ,OSNOVEC (4) ,OUT , CUMSNT (6 
{ ,4,5) ,CUMRCO (5,4,5) ,IHL9(4) ,IPKMAN(4,3) ,ALPHA,CUMATSN(6,4,5) , 
tCUMATRC(5,4,5),NEANS1(2,4,4) ,MEANS2(2,4,4) ,KTEST (11,4) , 
{KNOWANS (4,4) ,OATRTRN(2,4,2) ,REOHLD(4,2),KWAIT1(4,2),KWAIT2(4) 
real hemmat 

REAL MEVEC 
REAL INMAT SN 

REAL INMATRC 

INTEGER OUT 
CALL EQUIP (12,8HDATA1 ) ' 
REWINO 12 

READ (12,620) OUT 
REAO ( 12,630 ) ((ME M M A T(I,J) ,J=i,4) ,1=1,4) 
REAO (12,630) ((ME VEC (I» J),J=1,4),1=1,4) 

READ ( 12,640 ) ( (I TEST(I, J),J = i,3),1=1,2) 

REAO ( 12,650 ) ( l I'PKMftN (I, J ) , 1=1,4) , J = i , 3) 
REAO (12,660) (DSNOVEC(J),J=i,4) 

REAO (12,670) ALPHA 
READ (12,660) ((KTEST(I,J),J=1,4),1=1,11) 
REAO (12,690) MRNO» NTRL 
READ (12,70 0) ( (KNOWANS(J,K) ,J = 1,4),K = 1,4) 
READ(12,710) ((REQHLO(J,K),J=1,4) ,K = 1,2) 
CALL UNEQUIP (12) 
ICOOE = 1 
OUMMY = RNOG (1) 
TMCLK(l) = 0.0 

C BEGIN TRIAL 
OO 610 ITRIA.L = 1, NTRL ' . 
TMCLK(l) = TMCLK(l)+1.0 

CALL ZRAYS (2) 
C BEGIN ROUNO 

00.580 IROUNO=l,MRNO 

IF (IROUNO.EQ.l) GO TO 20 
CALL ZRAYS (1) 
ANS =0.0 
00 10 L =1,4 
ANS = ANVEC(5,L)+ANS 

10 CONTINUE 
IF (ANS.EQ.4.0) 590,20 

20 T MCL K(2) = TMCLK(2)+1.0 
00 560 J=1,4 
KSU9 = 0 

C DOES MAN HAVE ANSWER 

IF (ANVEC(5,J) .LT . 1 .) 30,330 
30 TAN1 = 0.0 ‘ 

TAN2 = 0.0 
T AN 1 = .99 

TAN2 = .99 
C ANY DATA REQUESTS OUTSTANDING IN NEANS 

CALL SEARCH (l,KSUO,J) 

IF (KSUO.EQ.O) 70,35 
35 R=RNOG(2) 

R=R/100. 



o
 o

 

168 

IF (R.LT.REOHLD( J , 1) ) 4 0,7 0 
C DATA WAS SENT TO KSUO LAST ROUND 

40 IF (LSTRNO1(J,KSUB) .GE.l) CALL NEWOAT (J,KSUB,2,AMEVEC) 
R = RNOG(2) 
R = R/ 10 0. 
IF (R.LE.TAN1) 50,70 

50 CALL MESSUP (KSUB,J , 2,1,1) 
GO TO 560 

60 CALL MESSUP (KSUB,J ,2,2,1) 
GO TO 560 

C ANY ANSWER REQUESTS 
70 CALL SEARCH (2,KSUB,J) 

IF (KSUB.EQ.0) 90,75 
75 R = RNOG ( 2) 

R=R/100. 
' IF(R.LT•REOH LD(J,2))80,90 

80 IF (LSTRNOl(J,KSUB) .GE.l) CALL NEWOAT (J,KSUB,3,AMEVEC) 
R = R N O G ( 2) 
R = R/100. 
IF (R.LE, T AM 2 ) 60,90 

C SELECT MAN 
90 R = RNOG ( 4) 

R = R/10000. 
00 100 1=1,4 
L = I 
IF (R.LE.MEMMAT(J,I)) 110,100 

100 CONTINUE 
110 KSUB = L 

C. SELECT MESSAGE 
120 R = RNOG(4) , < 

R = R/10000. 
00 130 L=1,4 
I = L 
IF (R.GE.MFVEC(I,J)) 130,140 

130 CONTINUE 
C CANNOT REQUEST A (SENO ANSWER ) FIRST ROUND 

140 IF (TMCLK(2) .EQ.1.) 150,160 
150 IF (I.EQ.3) 120,160 
160 IF (I.EG.4) 165,180 

165 IF(KWAIT2(J) .EG.2) 120,170 
170 CALL MESSUP (KSUB,J,5,0,5) 

KWAIT1(J,1)=1 
GO TO 560 

180 IF (I.EQ.l) 190,260 
190 IF (LSTRNOl(J,KSUB).GE.l) 200,210 

C IS THERE ANY NEW DATA SINCE LAST RECEIVEO 
200 CALL NEWOAT ( J,KSUO,1,AMEVEC) 

IF (AMEVEC.£0.0.0)220,210 
210 CALL MESSUP (KSUB,J,1,0,1) 

GO TO 560 
220 R = RNOG(4) 

R = R/10000. 
IF (R.LE.AMEVEC) 230^90 

230 CALL MESSUP (KSUB,J , 1,0,1) 
GO TO 560 

DIO NOT CHOOSE T'O SEND DATA TO THIS MAN BECAUSE IT WAS SENT 
THIS TRIAL , 

260 IF (I.EG.2) 270,290 
C HAS THIS OATA BEEN SENT LAST ROUNO 
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270 IF USTRNOHJ,KSUO).GE,1) 120,28U 
230 CALL MESSUP (KSUO,J,3,1,3) 

GO TO 560 
290 IF (I.EG.3) 300,310 
300 CALL MESSUF (KSUO,J,4,2,4) 

GO TO 560 
310 IF (I.EG.4) 315,330 

315 IF(KWAIT2(J) .EG. 2) 120,320 
320 CALL HESSUF (KSUO,J , 5,0,5) 

KWAIT1(J,1)=1 
GO TO 560 

C MAM HAS ANSWER LOOKING FOR ANOTHER TO SEND IT 
330 N U M = 0 

DO 335 K= 1,4 
IF(KNOWANS(J,K).ME.0) GO TO 335 
NUM = NUM4-1 

335 CONTINUE 
IF(NUM.EQ.0) GO TO 560 
CALL SEARCH (2,KSUO,J) 
IF(KSU B.EQ.0)GO TO 400 
IF(NUM.EQ.1)GO TO 350 

340 CALL MESSUP(KSU8,J,2,2,2) 
KNOWANS(J,KSU8)=2 
GO TO 560 . 

350 IF(KNOWANS(J , KSUO).EQ.0)GO TO 340 
OO 360 K=1,4 
IF(KNOWANS(J,K).GT.0) GO TO 360 
KSUB=K ' 

360 CONTINUE 
CALL MESSUP(KSUB,J,1,0,2) 
KNOWANS(J,KSUB)=2 
GO TO 560 

400 IF(NUM.EO.l) GO TO420 
CALL ANSERCH (J,KSUB) 

410 CALL MESSUF(KSUB,J, 1,0,2) 
KNOWANS(J,KSUB)=2 
GO TO 560 

420 DO 430 K= 1,4 
IF(KNOWANS(J,K).GT.0)GO TO 430 
KSUB=K 

430 CONTINUE 
GO TO 410 

560 CONTINUE ' ' 
C END OF ROUNO , FILL CUMANS 

DO 570 M-1,4 
J = M 
IF(ANSHLD(5,J).EQ.1.)CUMANS(J) = CUMANS(J)*1. 

570 CONTINUE . • 
530 CONTINUE 
590 CALL PRINT (0 , 0 , 0 , 0 , 0,1 , 0 , 0 , 0 , 0 ) 

JTRIAL=ITRIAL/20 
JTRIAL=ITRIAL-20*JTRIAL . 
IF(JTRIAL.EQ.O)CALL PRINT(1,1,0, 0,0,0,0,0,0,0) 
IF (TMCLK(2) .LT,TMCLK(3)) 600,610 

600 CALL LRNER ' . 
610 CONTINUE 

STOP 



620 FORMAT (12) 
630 FORMAT (0F7.4) 

6^0 format (615) 
650 FORMAT (1213) 
660 FORMAT (4F5.2) 

670 FORMAT (F5.2) 
660 FORMAT (1013) 
690 FORMAT (217) 

700 FORMAT(1612) 
710 FORMAT (8F4.2) 

ENO 
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SUBROUTINE SEARCH (II,KSUQ,JF) 

INCLUDE COMMON 
COMMON TMCLK(5),ANVEC(5,4) ,LSTRN01(4,4) ,LQ(4) , MEMMAT (4,4>,MEVEC(4, 

$4) ,INMATSN(6,4,5) ,FLQ(2,2) ,LSTRN02(4,4),INMATRC(5,4,5) ,CUMANS(4) , 
SANSKLO(5,4) ,LEO(4) , I TEST (2,3) ,OAT ASMT(4,4),OSNOVEC(4)* OUT,CUMSNT(6 
$,4,5),C U M R C 0 (5,4,5) ,IHLO(4) ,IPKMAN(4,3) ,ALPII A,CUMATSN(6,4,5) , 
$CUMATRC(5,4,5),NEANSi(2,4,4) ,NE ANS2(2,4,4) ,K TEST (11,4) , 
$KNOWANS(4,4) , OATRTRN(2,4,2),REQHL0(4,2),KWAITl(4,2) ,KWAIT2 (4) 

REAL MEMMAT 
REAL MEVEC 
REAL INMATSN 

REAL INMATRC . 
INTEGER OUT 
DIMENSION HL 0(4) , VCK(3) 

KSUB = 0 
DO 20 K-1,4 
IF (NEANS2 (II,JF,K).GT.O) 10,20 

II KSUQ = K 
20 CONTINUE 

IF (KSUO.EQ.O) 290,30 
30 LEQT = 0 

DO- 50 K = 1,4 
LEQ(K) = 0 
IF (K.EQ.JF) GO TO 50 
IF (NEANS2 (I I , JF,K) .GT.O) 40,50 

40 LEQ(K) = 1 

KM = K 
LEQT = LEQT+1 

50 CONTINUE 
C DETERMINE INTERACTION RATES OF THOSE WHO ONLY REQUEST ANS OR 

IF (LEQT.EO.l) 60,70 
60 KSUB = KM 

70 IF (LEQT.EQ.l) GO TO 290 
L = 1 
CO 100 1=1,4 

IF (LEO (I) .£0.1) 00,100 
50 IF (MEMMAT(JF ,1) .EQ. 0.0) 100,90 
90 HLD(L) = MEMMAT(JF,I) 

VCK(L) = I 
L = L + l 

100 CONTINUE 
IF (LEQT.EQ.3) GO TO 130 

C COMPARISON OF INTERACTION RATES FOR TWO REQUESTS 

V = 0. 0 
V = HLO(2)-H LO(1) 

IF (.50-V) 110,260,120 
110 KSUB = VC K(2) 

GO TO 230 
120 KSUB = VCK(l) 

GO TO 230 
130 IF (HLO(l) .EQ.HLO(2).ANO.HLO(l) .EQ.HL0(3)) GO TO 180 

IF (HLO(l)f.33.GT.HLD(2)) 140,190 
140 IF (HLO(l)+.66.GT•H L U(3)) 150,160 
150 IF (HLO(1)+•33,EQ•HLO(2)) 150,160 
160 IF (HLO (1)+» 66•EQ.HLO(3)) 180,170 
170 KSUB = VCK(l) 

GO TO 230 
150 GO TO 260 
190 IF (HLD (2)+.33.EQ.HLO(3)) 260,20 0 



200 IF (HL0(2>f.33.GT.HL0(3)) 210,220 
210 KSUO = VCK (2 ) 

GO TO 230 
220 KSUO = VCK(3) 

GO TO 230 

230 OO 240 K = 1,4 
HLO(K) = 0.3 

240- CONTINUE 

OO 250 L=i,3 
VCK(L) = 0.0 

250 CONTINUE 

GO TO 290 . 
260 IR = RNOG(2) 

MM = 0 

OO 270 1=1,3 
IF (IR.GT•ITEST(LEQT-1,I) ) 270,280 

270 CONTINUE, 

290 MM = I 
KSUO = IPKHAN (JF,MM) 

290 RETURN 

ENO 
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SUBROUTINE NEWOAT ( J , KSUB , KPT 1, A ME V-EC) 
INCLUDE COMMON 

COMMON TMCLK (5) , ANVEC (5,4) ,1-STRNdl (4 ,4) ,LQ (4 ) ,ME MMAT <4,4) , MEVEC(4, 
14) ,INMATSN (6,4,5) ,FLO (2,2) ,LSTRND2(4,4) ,INMATRCt5,4,5) ,CUMANS(4), 
1ANSHLO(5,4),LEQI4),ITEST(2,3),OATASNT(4,4),OSNOVEC(4),OUT,CUMSNT(6 

1,4,5) ,CUMRC0 (5,4,5) ,IHLO(4) ,IPKMAN (4,3) ,ALPHA,CUMATSN(6,4,5) , 
1CUMATRC(5,4,5),MEANS 1(2,4,4) ,NE ANS2(2,4,4) ,KTEST(11,4), 
$ KMCWANS (4,4) , OATRTRN 12,4,2) ,REQHL0(4,2),KWAIT1(4,2),KWAIT2(4) 

REAL MEMMAT 
REAL MEVEC 
REAL INMATSN 

REAL INMATRC 
INTEGER OUT 

AMEVEC = 0.0 
en = o. 
CO 10 1=1,5 

10 BO = ANSHLOtI,KSUB)+ B0 
eo = o.o 
00 20 1=1,5 

20 00 = ANVEC (I , KSUO)+00 
IFLBO.GT.00)40,30 

40 CALL 0 ATS NO (J,KSUB,KPT1,AMEVEC,TAN1,TAN2) 
30 RETURN 

END 
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SUBROUTINE NE'WOAT (J,KSUB,KPT 1,AMEVEC) 

IN.CLUOE COMMON 

COMMON TMCLKI5) , ANVEC (5,4) ,LSTRN01 (4 ,4) ,10 (4) , ME MM AT (4 ,4) ,MEVEC (4, 
*4) , INMATSN(6,4 ,5) ,FLO (2,2> ,LSTRND2(4,4) ,INMATRC(5,4,5),CUMANS(4), 
$ ANSHLD (5*4) , LEQ(4) , I TEST. (2,3) ,OATASNT (4,4) ,OSNOVECC4) ,OUT,CUMSNT(6 

1,4,5) , CUMRCO (5,4,5) ,IHL0(4) , I PK-M AN < 4,3 ) , A l PH A , CU M A T S N ( 6,4,5) , 
SCUMATRC(5,4,5) ,NEANS1(2,4,4) ,NEANS2(2,4,4) ,KTEST (11,4) , 

■«KNOWANS (4,4) , OATRTRN(2,4,2) ,REOHLO(4,2),KWAIT1(4,2),KWAIT2(4) 
REAL MEMMAT 
REAL MEVEC 
REAL INMATSN 

REAL INMATRC 
INTEGER OUT 
AMEVEC = 0,0 
EB = 0. 
CO 10 1=1,5 

10 BO = ANSHLD(I,KSUG)+ BB 
GO = 0,0 . 
00 20 1=1,5 

20 BO = ANVEC(I , KSUB) *BO 

IF(BB.GT.OO)40,30 * • ' 
40 CALL U ATS NO ( J,.KSUB , KPT1, AMEVEC , TAN1 , TAN2 ) 

30 RETURN 

ENO 
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SUBROUTINE OATS-NO (J , KSUB, IKEY , A ME VEC , T ANi , T AN2) 
INCLUOE COMMON 

COMMON TMCLK (5),ANVEC(5,4), LSTRNOl (4 , 4 ) , L Q (4) , ME MM A T (4,4) , MEVEC (4, 
S 4) ,INMATSN(6,4,5) , FLO (2,2) ,LSTRN02(4,4),INMATRC< 5,4,5) , CUMANS ( 4) , 
lANSHLO (5,4) ,LEO (4) , I TEST(2 , 3) ,DATASNT(4,4) ,OSNOVEC(4) ,OUT,CUMSNT(6 

t ,4,5) , CU.HRCO (5,4,5) ,IHLO(4) ,IPKMAN(4,3) , ALPI! A , CU MA TS N ( 6,4,5) , 
SCUMATRC(5,4,5), NEANSK2,4,4) ,NEANS2(2,4,4) ,KTEST (11,4) , 
$ K N 0 W A N S ( 4,4) ,QATRTRN(2,4,2) ,REQHL0(4,2) ,KWAIT1(4,2) ,KWAIT2(4) 

REAL MEMMAT 
REAL MEVEC 
REAL INMATSN 
REAL INMATRC 
INTEGER OUT 
T AN 1 = .00 

TAN2 = .20 • 
GO TO (10,20 , 30 ), IKEY 

10 IVAL = DATASNT(J,KSUB) 
IF (IVAL.GT .4) IV A L = 4 ■. 
AMEVEC = .80-(MEVEC (1,KSUB)*DSNOVEC(IVAL)) 

GO TO 40 
20 IVAL = DATASNT(J,KSUB) 

IF(IVAL.GT.4)IVAL - 4 
TAN1 = TAN1- (TANl*DSNOVEC(IVAL)) 

GO TO- 4 0 
30 IVAL - DATASNT(J,KSUB) 

IF ( IVAL.GT.4) IVAL = 4 

TAN2 = TAN2- (TAN2*OSNDVEC(IVAL)) 
GO TO 40 

40 RETURN 

END 
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SUBROUTINE MESSUP (KSUU , JM , KPT , 11,IB) 

INCLUDE COMMON 

2 Q 

30 

4 0 

COMMON TMCLK C5),ANVEC(5,4) ,LSTRNOl(4 » 4),LQ(4),ME MMAT(4,4),MEVEC(4, 
t4) ,INMATSN(6 , 4,5) ,FLO (2,2) ,LSTRN02(4♦4) ,INMATRC( 5,4,5) ,CUBANS(4) , 
TAMSHLO (5,4) , t.CO (4) , I TEST (2,3) , DATASNT (4,4) ,OSNOVEC(4),OUT,CUMSNT C6 

% ,4,5) , CUMRCO (5,4,5) , IHL0.(4) , IPKMAH (4 ,3) , ALPHA , CU MATS N (6,4,5), 
tCUMATRC(5,4,5)jNEANSl(2,4,4),MEANS2(2,4,4),KTEST(11,4) , 

NOWANS (4,4) ,0ATRTRN(2,4,2),REQHL0(4,2),KWAIT1(4,2),KWAIT2(4) 
REAL MEMMAT 
REAL MEVEC 

REAL INMATSN 
REAL INMATRC 
INTEGER OUT 
INMATSN(IQ,JM,KSUB) = INMATSN(IB,JM,KSUB)♦!.0 

INMATSNdO, JM,5) =0.0 
00 20 K=i,4 
INMATSN (13, JM,5) = INMATSN (IB ,'JM , 5) ♦INMATSN < IB , JM, K> 

CONTINUE 
INMATSN(6,JM ,KSUB) = 0.0 
00 30 1=1,5 
INMATSN(6,JMjKSUB) = INMATSN(6,JM,KSUB)>INMATSN(I,JM,KSUB) 

.CONTINUE ’ 
CUMSNT(13,JM,KSU0) = CUMSNT(IQ,JM,KSU0)♦1. 
CUMSNT.(IB, JM,5) = 0.0 
00 4 0 K = 1,4 
CUMSNT(ID,JM,5) = CUMSNT(IB, JM,5)+CUMSNT(IB,JM,K) 
CONTINUE 
CUMSNT(6,JM,KSU3) = 0.0 
00 50 1=1,5 

50 

60 

70 

83 

90 

100 

110 

CUMSNT (6,JM, KSU3) = CUMSNT(6,JM,KSUB)♦CUMSNT (I ,JM,KSUB) 
CONTINUE 
IF (KPT.EQ.5) 150,60 
INMATRC(13,KSUB,JM) = INMATRC(I 0 , KSU0,JM)♦1. 
INMATRC(IB,KSUO,5) = 0.0 
00 70 K=1,4 

INMATRC(10 ,KSU0,5) = INMATRC(IB , KSUB , 5)fINMATRC(TB,KSUB,K) 
CONTINUE 
INMATRC(5,KSUO,JM) •= 0.0 

00 80 1=1,4 
INMATRC(5,KSUO,JM) = INMATRC(5,KSUO,JM)+INMATRC(I,KSUB,JM) 
CONTINUE 

CUMRCO(10,JM ,KSUB) = CUMRCO(10,JM,KSUB)H. 
CUMRCO(IB,KSUB,5) = 0.0 
00 9 0 K = 1,4 

CUMRCO(10,KSUB,5) = CUMRCO(10,KSUB,5)+CUMRCO (IB,KSUB,K) 
CONTINUE 
CUMRCO(5,KSUB, JM) = 0.0 

DO 100 1=1,4 
CUMRCO (5,KSUO, JM) = CUMRCO (5 , KSUB , JM ) ♦CUMRCO (I ,-KSUB , JM) 

CONTINUE 
IF (KPT.EQ.3) 110,120 
NEANS1(II,KSUB,JM) = NEANSI(II,KSUB,JM)♦1 
GO TO 150 

120 IF (KPT.EG.4) 130,140 
130 NEANS1(2,KSUO,JM) = 1 

GO TO 150 

140 • LSTRN02(JM,KSUB) = 1 
DATASNT (JMjKSUll) = DATASNT ( JM, KS'UB) ♦ 1. 
IF (KPT.LE.2) CALL TRANVEC (KSUB,1,JM) 



IF (KPT , FO. 2.) 145, 150 

145 NEANS2(II»JM.KSUB) = NEANS2(II,JM,KSUO)-1 

OATRTRM (I I.» JM, 1) = OATRTRN(II , JM, 1) + 1. 0 

150 RETURN 
ENO 
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SUBROUTINE TRANVEC ( KSUO , KEY ,.J) 
INCLUDE COMMON 

COMMON TMCLK ( 5) , AN VEC (5 , 4 ) , LS TR NOi (4 , 4 ) , LO (4 ) , MEMMAT (4,4) , MEVEC (4, 
4) , INMATSN (6 , 4,5) ,FLQ (2,2) ,LSTRN02 (4,4) , INMATRC( 5,‘4,5) , CUMANS (4) , 

TANSHLO(5,4),LEO(4) , I TEST (2,3) ,OATASNT(4,4) ,OSNDVEC(4) ,OUT,CUMSNT(6 

t,4,5) ,CUMRCO(5,4,5),IHLO(4),IPKMAN(4,3),ALPHA,CUMATSN(6,4,5) , 
tCUMAT'RC(5,4, 5) ,NEANS1(2,4, 4) , NE ANS2 ( 2,4,4 ) ,KTEST (11,4) , 
I KNOW AMS(4,4) , OATRTRN ( 2,4,2) ,REQHLO(4 , 2),KWAIT1 14,2) ,KWAIT2 (4) 

REAL MEMMAT 
REAL MEVEC 
REAL INMATSN 

REAL INMATRC 
INTEGER OUT 
GO TO (10), KEY 

10 00 20 1=1,4 
IF (KSUG.EQ. I) GO TO 20 
IF(ANVEC(I,J).GT.ANVEC(I,KSUB))ANSHL0 (I,KSUO) = 1. 

20 CONTINUE 
X = 0. 0 •. 
00 30 1=1,4 

30 X = ANSHLO(I,KSUO)fX 
IF (X.EQ.4.) 40,50 

40 ANSHLO(5,KSUO) = 1.0 

50 RETURN 
ENO 
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10 

20 

30 

40 

50 

60 

70 

80 
9 0 
130 

110 

120 
130 
140 
150 

160 

170 

190 

190 

SUBROUTINE ANSERCH (J,KSUB) 

INCIUOF. COMMON 

COMMON TMCLK (5) , ANVEC(5,4) ,LSTRN01 (4 ,4) ,LQ (4) ,ME'MMAT (4,4) ,MEVEC (4, 
J4), INMATSN(6,4,5),FLQ(2,2), LSTRN02(4,4)»INMATRC(5,4,5),CUMANS(4), 
tANSHLD(5,4),LEO(4),ITEST(2,3),OATASMT(4,4) ,OSNOVEC(4) ,OUT ,CUMSNT(6 

% ,4,5) ,CUMRCO (5,4,5),IHLO(4) ,IPKMAN(4,3),A L PH A, CU MA T S N ( 6 ,4,5) , 
SCUMATRC(5,4,5) , MEANS 1 (2,4, 4) , NEANS2 (-2,4,4),KTEST (11,4) , 
$KNO WANS (4,4) , OAT.RTRN (2,4,2 ) , REO HLO (4,2) , KH AI T1 (4,2) , KW A IT2 (4 ) 

REAL MEMMAT 
REAL MEVEC 
REAL INMATSN 

REAL INMATRC 
INTEGER OUT 
DIMENSION HLDL4), VCK(3) 

NO ANSWER HAS BEEN SENT , DETERMINE A KSUB 
THERE IS ONLY ONE MAN TO SEND A MESSAGE 

IHLDR =0 . 
DO 10 1=1,4 
IF (I.EO.J) GO TO 10 
IF (MEMMAT(J ,I) .EQ.0.0) GO TO 10 

IHLDR = IHLOR+i 
KSUB = I 
CONTINUE 
IF (IHLDR.EQ.l) 230,20 
L = 1 
DO 40 1=1,4 
IF (MEMMAT(J,I).EO.0.0) 40,30 
HLO(L) = MEMMAT(J,I) 
VCK(L) = I 

L = L+l 
CONTINUE 
IF (IHL0R.EQ.3) GO TO 70 

V = 0. 0 
V = HL O(2)-H LD(i) 
IF (. 5 0-V) 5 0,20 0,60 

KSUB = VCK(2) 
GO TO 170 
KSUB = VCK(l) 

GO TO 170 
IF (HLD(1) .EQ.HL0(2) .AND.HLD(l).EQ.HLD (3)) GO TO 120 

IF (HLD(1)♦.33.GT.HLD12)) 80,130 

IF (HLO(1)f.66.GT.HLD(3)) 90,100 
IF (HLO(l)♦.33.EQ.HLD(2)) 120,100 
IF (HLO(l) + . 66.EQ.HLD(3)) 120,110 

KSUB = VCK(i) 
GO TO 170 
GO TO 200 

IF (HL O ( 2) •*■. 33 . EQ . HLO (3) ) 200,140 
IF (HLO(2)♦» 33.GT.HLD(3)) 150,160 
KSUB = VC K(2) 

GO TO 170 
KSUB = VCK(3) 
GO TO 170 

DO 180 K=1,4 
HLO(K) = 0.0 
CONTINUE 

■CO 190 L=i,3 
VCK(L) = 0.0 
CONTINUE 



GO TO 230 

200 IR = R N 0 G(2) 
MM = 0 

00 210 1=1,3 
IF (IR.GTtHEST(IHlDR-l*I) ) 210,220 

210 CONTINUE 
220 MM = I 

KSUB = IPKMAN(J,MH) 

230 RETURN 
ENO 
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SUBROUTINE LRNER 
INCLUDE COMMON 

COMMON TMCLK ( 5) ,ANVEC < 5,4) ,LSTRNDi(4,4) , LQ (4) , ME MM A T (4 , 4) , MEVEC (4, 
54) ,INMATSN(6,4,5) ,FLO (2,2) ,LSTRN02<4,4),INMATRC(5,4,5) ,CUMANS(4), 
5ANSHLD(5,4),LEO(4) ,ITEST (2,3),OATASNT (4,4),OSNOVEC(4),OUT,CUMSNT(6 
$'>4,5) , CUMRCO (5,4,5) , IHLO (4) , IPK MAN (4,3) ,ALPHA,CUMATSN (6 >4,5) , 
$ CUMATRC(5,4,5) ,NEANS 1 (2,4,4) ,ME A NS2(2,4,4) ,KTEST (11 , 4) , 
l KNOW ANS (4,4) , OA TRTRN ( 2,4,2 ) , RE Q Ml 0(4,2) , KWAI T1 <4,2) , KWA I-T2 (4) 

REAL MEMMAT 
REAL MEVEC 
REAL INMATSN 
REAL INMATRC 
INTEGER OUT 
DIMENSION IH N(4) , IZEK(4), HL0(4), V CK(3) 
CALL INCNUM 
WRITE (OUT,610) 
00 400 J= 1,4 
ITEM = 0 
RV = 0.0 

. LEQT = 0 
KV = 0 
VX = 0.0 
LS = 0 
00 25 1=1,5 
IF (I.EQ.2) GO TO 25 
IF (INMATSN(I,J,5).GT.VX) 10,20 

10 RV = LS 
LEQT = LEQT*-1 

20 LS=LS+1 
25 CONTINUE 

IF (LEQT.EQ.O) GO TO 400 
IF (LEQT.EC.i) 30,40 

30 - ITEM = RV 
GO TO 390 

40 00 50 1=1,4 
IHN(I) = 0 
IZEK(I) = 0 

50 CONTINUE 
> 1 = 1 

DO 60 L=i,5 
IF (L.EQ.2) GO TO 60 ' 
IZEK(I) = IN MATSN(L,J,5) 
KV = I - 
IHN(I) = KV 
I = Ifl 

60 CONTINUE 
MM = 0 
IF (IZEK(1).GT.IZEK(2).ANO.IZEK(l),GT.IZEK(3).AN0.IZEK(1).GT.IZEK 

i(4)) 70,00 
70 ITEM = INN (1) 

GO TO 390 
0 0 IF (IZ E K(2).GT.IZEK(1).AND.IZEK(2).GT.IZEK(3).ANO.IZEK(2).GT.IZEK 

5(4)) 90,100 
90 ITEM = IHN (2) 

GO TO 390 
100 IF (IZEK(3).GT.IZEK(1).AN0.IZEK(3).GT.IZEK(2).ANO.IZEK(3) .GT.IZEK 

5(4)) 110,120 
110 ITEM = IHN <3) 

GO TO 390 
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120 IF (IZEK(4) .GT.IZEK(i) . ANO.. IZ-EK (4).G T.IZE K(2).AN 0•IZEK < 4).GT.IZEK 
$ ( 3)) 130,140 

130 ITEM = ' IMN(4) 
GO TO 300 ~ 

140 IF (IZEK(l) • EQ.IZE K(2) . ANO.IZEK(l) . EQ•IZEK(3) .ANO.IZEK(1) .EQ.IZEK 
5(4)) 150,160 

150 MM = 11 
GO TO 360 

160 IF (IZEK(l).EO.IZEK(2>.ANO.IZEK(l).EQ. IZEK<3)) 170,180 
170 HM = 7 . 

GO TO 360 
130 IF (IZEK(i).EQ.IZEK(2).ANO.IZEK(1).EQ.IZEK(4 ) ) 190,200 
190 MM .= 10 

GO TO 360 
2 9 0 IF (IZEK(1).EQ.IZEK(3).ANO.IZEK(1).EQ.IZEK(4)) 210,220 
210 MM = 9 

GO TO 360 
220 IF (IZEK(l).EQ.IZEK(2)) 230,240 
230 MM - 1 

GO TO 360 
240 IF (IZEK(l),EQ.IZEK(3)) 250,260 
250 MM = 4 

GO TO 360 
260 IF (IZEK(l)•EQ.IZEK(4)) 270,280 
270 MM = 6 

GO TO 360 
230 IF (IZEK(2).EO.IZEK(3).ANO.IZEK(2).EQ.IZEK(4)) 290,300 
290 HM = 8 

GO TO 360 
300 IF (IZEKC2)»EQ.IZEK(3)) 310,320 
310 MM = 2 

GO TO 360 
320 IF (IZ E K(2).EQ.IZEK(4)) 330,340 
330 HM = 5 • • 

GO TO 360 
3'0 IF (IZEK(3).EQ.IZEK(4)) 350,360 
350 MM = 3 
360 IR = R N O G(2) 

DO 370 1=1,4 
IF ( IR ,GT.KTEST(MM,I)) 370,380 

370 CONTINUE 
3 90 ITEM = IHN(I) 
390 AOD =0.0 , 

ADO =■ MEVEC( 1, J) 
IF(ITEM•GT .1)AOD = MEVEC(ITEM,J)-MEVEC(ITEM-1,J) 
AOO = ~.Q2*A00 ♦ALPHA 
CALL ME V I.NCR (ITEM,J,ADO) 

400 CONTINUE 
WRITE (OUT,620) ( (MEVEC(L3,M3),M3=1,4) ,L3=1,4) 

C 'NOW FOR INTERACTION RATES 

OO 600 J = 1,4 
LEQT = 0 
I WHO = 0 . 
RGST = 0.0 
DO 430 K= 1,4 
IF (K. EQ.1.AND.INMATRC (5,J, K) .EQ. 0 . 0 ) 430,410 

410 IF (INMATR'C (5 , J, K) . EO. 0 . 0) GO TO 430 
IF (INMATRC(5,J,K).GE.RGST) 420,430 

420 RGST = INMATRC<5,J,K) 



IWHO = K 
LEOT - LECmi 

430 CONTIHUE 
If (LEQT.EQ.O) GO TO 600 
IF (LEQT.EC.1) GO TO .590 
L = 1 
00 440 1-1,4 
IF (INMATRC(5 , J, I) .EQ.0.0) GO TO 440 
HLD(L) = INMATRC (5, J, I) 
VCK(L) = I 
l = L + 1 

440 CONTINUE 
IF (LE QT « EQ.3) GO TO 470 
IF (HLO(2)-HLO(l)) 460,560,450 

450 IWHO =-.'VCK (2) ' 
GO TO 590 

.460 IWHO - VCK(l) 
GO TO 590 

470 IF (HLO(l) .EQ.HLO (2) . ANO.HEO (1) .EQ.HLQ13) ) GO TO 560 
IF (ML O (1) • G T.HL D( 2)) 480,5 10 

430 IF (HLO ( D-.GT .HLO (3) ) 490,500 
490 IF (HLO(1).EQ.HLO(2)) 560,500 
500 IF (HLO (1) .EQ.HLO( 3)) 560,530 

• 510 IF (HLO ( 2) . F. Q .HLO ( 3 ) ) 560,520 
520 IF (HLO(2) .GT.HLO (3)) 540,550 
530 IWHO = VCK(l) 

GO TO 590 
540 IWHO = VC K (2 ) 

GO TO 590 
550 IWHO = VCK (3 ) 

GO TO 590 
560 IR = RNOG(2) 

IWHO = 0 
OO 570 K=1,3 
IF (IR.GT.IT EST(LEQT-1» K)) 570,580 

570 CONTINUE 
530 ITEM = K 

IWHO = IPKMAN (J,ITEM) 
C SET THE INDICATOR FOR STRUCTURE 

590 CALL MEMMINC (J,IWHO) 
600 CONTINUE 

WRITE (OUT,630) (<MEMMAT(14,M4) ,M4 = l,4) ,L4 = 1 , 4) 
RETURN 

C 
610 FORMAT (* LEARNER 7) 
62.0 FORMAT (4F7.4) 
630 FORMAT (4F7.4) 

END 
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SUBROUTINE MEVINCR (ITEM,J,ADD) 
INCLUDE COMMON 
COMMON TMCLK (5) , AN VEC (5,4) , LSTRNOl (4 ,4) ,LQ (4) , ME MM AT (4, 4) , MEVEC (4, 

t 4) , INMATSN (6 , 4,5) , FLQ (2,2) , LSTRND2 (4,4) , INMATRC ( 5,4, 5) ,CUMANS (4) , 
$ ANSHLO (5,4) , LEO (4) , I TEST (2,3) , OATASNT (4,4) ,OSNDVEC (4) , OUT,CUMSNT (6 
$,4,5),CUMRCD (5,4,5) ,IHL0(4) ,IPKMAN(4,3) ,ALPH A,CUMATSN(6,4,5) , 
$CUMATRC(5,4,5),NEANSi(2,4,4) ,NE ANS2(2,4,4) ,KTEST (11,4) , 
$ KNOW AN S (4,4) , DA TRTR'N ( 2,4,2 ) , REQ HLD (4,2 ) , K W A I Ti (4 , 2 ) , KW A I T 2 (4 ) 

REAL MEMMAT 
REAL MEVEC 
REAL INMATSN 
REAL INMATRC 
INTEGER OUT 
DIMENSION TE MP(4) ' 

WRITE (OUT,60) (ITEM,J,ADD) . 
ITEM = ROW 
J = COLUMN 
AOO = AMOUNT OF INCREMENT 

00 10 1=1,4 
TEMP(I) = ME VEC(I,J) 

10 CONTINUE 
GO TO (20,30,40,50), ITEM 

20 RATIO = MEVEC (4,J)-MEVEC(1,J) 
RATIO = (RATIO-ADD)/RATIO 
MEVEC(1,J) * =■ MEVEC(1,J)+AOO 
MEVEC ( 2 , J) = MEVEC(1,J) f(TEMP(2)-TEMP(1)) *RATIO 
M E V E C ( 3 , J ) = MEVEC(2,J) MT£MP(3)-TEMP<2>)*RATIO 
RETURN 

30 RATIO = MEVEC (1,J)fMEVEC(4,J)-MEVEC(2,J) 
RATIO = (RATIO-AOO)/RATIO 
MEVEC(1,J) = MEVEC(1,J)*RAT 10 
MEVEC(2,J) = MEVEC(1,J)f(TEMP(E)-TEMP(1) ) fAOO 
MEVEC (3, J) = MEVEC (2, J) MTEMP (3)-TEMP (2) ) *RATIO 
RETURN 

40 RATIO = MEVEC12,J)+MEVEC(4,J)-MEVEC(3,J) 
RATIO = (RAT IO-ADD)/RATIO 
MEVEC(i,J) = MEVEC(1,J)*RATIO 
M E V EC(2,J) = MEVEC (1 ,J) MTEMP (2)-TEMP (1) ) *RATIO 
MEVEC ( 3 , J) = MEVEC (2 ,J) + (TEMP (3) - TEMP(2) ) 4-ADD 
RETURN 

53 RATIO = MEVE C (3,J) * . 
RATIO = (RATIC-ADD)/RATIO 
ME VEC (1, J ) = MEVEC 1, J ) *RATIO 
MEV£C(2,J) = MEVEC(1,J>♦(TEMP(2)-TEMP(1))*RATIO 
M E VEC ( 3 , J) = MEVEC(2, J) MTEMP(3> -TEMP(2) ) *RATIO 
RETURN 

C 
60 FORMAT ( * ITEM IS*,I3,2X,*J ISt , 13,2X,/ADD=t ,F7.4) 

END 
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SUBROUTINE m’emMINC (J,IWHO) 
INCLUDE COMMON 

C INO DENOTES WHICH CONFIGURATION IS BEING USEO 
C I NO = 1 FOR CIRCLES? I NO - 2 FOR CONCOM 

COMMON TMCLK (5) ,ANVEC(5,4) , LSTRND1 { 4 ,4) ,LG(4) , MEMMAT (4 , 4) ,MEVEC ( 4 , 
14) ,INMATSN{6,4,5) ,FLQ (2,2) ,LSTRN02(4,4) , INMATRCl.5,4,5} ,CUMANS(4) , 
$ ANSHLO (5,-4) , LEO (4) , ITES T (2,3 ) , D (\T ASN T ( 4,4 ) , DSNDV EC (4 ) ,OUT,CUMSNT (6 
* , 4,5) , CUMRCO (5,4,5) ,Ih'LQ(4) , IPK MAN (4,3) , ALPHA,GUMA7SN(6,4,5) , 
$CUMATRC(5,4,5),NEANS1(2,4,4) ,NEANS2(2,4,4) ,KTEST (11,4) , 
SKNOWANS (4,4) ,OA T RTRN(2,4,2) ,REOHLO(4,2) ,KWAIT1(4,2) , KWAIT2C4) 

REAL MEMMAT 
REAL MEVEC 
REAL INMATSN 
REAL INMATRC 
INTEGER OUT 
0 AO 0 = 0.0 
AOO = 0.0 
WRITE (OUT,240) (J,IWHO) 
CLOD = 0.0 

C . . * 
C IN0 = 1, FOR CIRCLES, IN0 = 2 , FOR COMCONS 

' INO = 1 
GO TO (10,30), INO 

10 IF (IWHO.GT.2) GO TO 20 
AOO = ( (.06*MEMMAT(J,IWHO)) +ALPHA)-MEMMAT(J,I WHO) 
MEMMAT (J, IWHO) = MEMMAT(J,I WHO)♦AOO 
RETURN 

20 ADD = (MEMMAT(J,IWHO)-MEMMAT(J,I WHO-2) ) 
AOO = (.90*AOD)+ALPHA-AOO 
MEMMAT (J,IWH0-2) = MEMMAT(J,I WHO-2)-AOO 
RETURN 

30 GO TO (40,00 , 120,160 )J 
40 IF ( IWHO. E0..2 ) OLDO = MEMMAT (1,2) - 

IF(IWHO.EO.3)OLOO = MEMMAT(1,3)-MEMMAT (1,2) 
IF(IWHO.EQ.4)OL00=MEMMAT(1,4)-MEMMAT(1,3) 
A00= (. 98*0LOO)+ALPHA-OLOO 
RATIO=(OLOO-AOO)/OLOO 
GO TO (50,50,60,70)IWHO 

50 MEMMAT (1,1) = 0.0 
MEMMAT(1,2)=MEMMAT(1,2)+ AOD 
MEMMAT(1,3) = MEMMAT(1,2)+(OLOO’RATIO) +(.5*A00) 

-RETURN 
60 MEMMAT(1,1)=0.0 

MEMMAT (1,2> = MEMMAT (1,2) *RATIO+( .’5 + A00) 
MEMMAT (1,3)=MEMMAT(1,2)+OL00 +ADO 
RETURN 

70 MEMMAT (1, 1) = 0.0 
MEMMAT (1,2) = MEMMAT (1,2)* RAT 10+(.5*ADO) 
MEMMAT(1,3)=MEMMAT(1,2)+(OLOO*RATIO)+(.5*AOO) 
RETURN 

80 IF(IWM 0.E 0.1)OLOO = MEMMAT(2,1) 
IF(IWHO.EG.3)OLD0=MEMMAT(2,3)-MEMMAT(2,1) 
IF(IWHO.EQ.4)OLOO-MEMMAT(2,4)-ME MMAT(2,3) 
A 00=(. 9 0*OLOO)+ALPHA-OLOO 
RATIO=(OLOO-AOO)/OLOO 
GOTO (90,10 0,10 0,110,; IWHO 

90 MEMMAT (2,2) = 0.0 
MEMMAT (2,l) = MEMMAT(2,l)+AOO 
MEMMAT(2,3)=MEMMAT(2,1)+0L00*RATI0+(.5*A00) 



RETURN 
100 MEMMAT(2,2) = 0•0 

MEMMAT (2,1) = MEMMAT (2,1) *RATIOM .5*AOD) 
MEMMAT(2,3)=MEMMAT(2,1)+OLDO*ADO 
RETURN 

110 MEMMAT (2,2) = 0.0 
MEMMAT (2, 1) =’MEMM AT ( 2,1) * RA T 10 + ( . 5* AO 0) 
MEMMAT (2,3) = MEMMAT (2,1) MOLDO*RATI0) ♦ (.5♦ADD) 
RETURN 

12 0 IF (IWHO.EO.i ) OL 0.0 = ME MM AT (3 , 1) 
IF(IWHO.EQ.2)0100=MEMMAT(3,2)-MEMMAT(3,1) 
IF(IWHO«EQ.A)OLD0=MEMMAT(3,4)-MEMMAT (3,2) 
A00= (. 98*OLD 0)fALPHA-OLDO 
RATI-0= (OLOD- AOO) /OLDO 
GO TO ( 130,1 40,140,150)IHHO 

130 MEMMAT (3,3)=0.0 
MEMMAT(3,1) = MEMMAT (3,1) fAOD 
MEMMAT (3,2) = MEMMAT (3,1) ♦ OLDO*RATIO+'( *5*ADO) 
RETURN 

140 MEMMAT (3,3) = 0.0 

MEMMAT (3,1) = MEMMAT (3,1) * RATI OM .5* ADO) 
MEMMAT (3,2)=MEMMAT (3,1) +OLDO»-AOO 
RETURN 

150 MEMMAT ( 3,3 ) = 0.0 . 
MEMMAT(3,1)=MEMMAT(3,1)*RATI0f( .5*A0D) 
MEMMAT (3,2) = MEMMAT (3,1) +(OLOD*RAT10)f(.5*ADO) 
RETURN 

160 IF (IWHO.EQ.l)OLOQ = MEMMAT(4,1) 
IF(IWHO.EQ.2)OLDD=MEMMAT(4,2)-MEMMAT(4,1) 
IF(I WHO. ED*3)OLD0 = MEMMAT(4,3)-MEMMAT (4,2) 
ADO= (.9 8*010 0)+ALPHA-OLOO 
RATIO=(OtOO-AOD)/OUOO 
GO TO ( 170,1 90 , 190,190)IWHO 

170 MEMMAT(4,4) = 0.0 
MEMMAT(4,1)=MEMMAT(4,1)+AOD 
MEMMAT ( 4,2) = MEMMAT ( 4,1) + (OL00*RATIO) +(.5 *ADO) 
RETURN 

160 MEMMAT(4,4)=0.0 
MEMMAT(4,1) = MEMMAT(4,1)*RAT 10 +(.5*AOO) 
MEMMAT (4,2) = MEMMAT (4,1) +OLDO+AOO 
RETURN 

190 MEMMAT (4,4) = 0 . 0 
MEMMAT (4,1) = MEMMAT(4,1) *RAT10+ ( .5* AO 0) 
MEMMAT ( 4,2) = MEMMAT (4,1) +(OLDD*RATIO) + ( .5*ADO) 
RETURN 

240 FORMAT (t J EQUALS 7,13,2X,tlWHO EQUALS *,13 »1X) 
ENO 
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SUBROUTINE INCNUM 
INCLUDE COMMON 

COMMON TMCLK ( 5) , AN VEC (5,4) , L ST R NOl (4 , 4) , L Q (4 ) , ME MM A T (4,4) , ME VEC ( 4 , 
% 4) , INMATSN (6,4,5) ,FLQ (2,2) , LSTRM02 (4 ,4) , INMATRC* 5,4,5) , CUM ANSI 4) , 
% ANSHLD (5,4) , LF.O (4) , I TEST (2,3) , DATASNH 4,4) ,OSNOVEC(4) ,OUT,CUMSNT<6 

5,4,5), CU.MRCD ( 5,4,5 ) , I HID ( 4 ) , IPK MAN (4,3 ) , ALPH A , CU MA TSN ( 6 ,4, 5) , 
5CUMATRC (5,4, 5) , MEANS 1 (-2,4,4) , NEANS2<2,4,4) ,KTEST (il ,4) , 
%KNOWANS (4,4) , OATRTRN (2,4,2) ,REOHLO (4,2),KWAIT1(4,2) ,KHAIT2(4) 

REAL MEMMAT 
REAL MEVEC 
REAL INMATSN 

REAL INMATRC 
INTEGER OUT 
DO 20 J = 1,4 
IF(OATRTRN (1 , J,1) «LT.OATRTRN(1,J,2))GO TO 10 
REOHLO(J,1) = REOHLO(J,1)+#02*(1-REGHL D (J,1)) 

10 IF(0ATRTRN(2 ,J,1) »LT.OATRTRN(2,J,2))GO TO 100 

REOHLO(J,2)=REOHLO(J,2)+.005*(l-REOHLD(J,2)) 
20 CONTINUE 

100 00 2C 0 J= 1,4 
DO 200 K-1,2 
00 200 1=1,2 
OATRTRN (I,J,K)=0.0 

200 CONTINUE 
RETURN 
END 
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SUBROUTINE ZRAYS ( KPT R) 

INCLUDE COMMON 

COMMON TMCLK C 5) , ANVEC(5,4) ,LSTRNC1(4,4),LQ(4), ME MM AT (4,4) , M E V E C (4, 
t4),INMATSN(6,4,5),FLQ(2,2),LSTRH02(4,4),INMATRC(5»4,5),CUMANS<4),. 
*ANSHLD(5,4),LEO(4) ,ITEST(2,3),OATASNT (4,4) ,OSNOVEC(4),OUT,CUMSNT(6 

5,4,5) ,CUMRC9 (5,4,5) , IHLO ( 4) , IPKMAN (4,3 ) , ALPHA lCUMATSN (6,4,5)'» 
5 CUM A TRC (5,4,5) , NE AMS 1 ( 2,4, 4 ) , NF. ANS2 ( 2,4,4) , K TEST (11,4) , 
JKNQWANS(4,4) ,OATRTRN(2,4,2) ,REQHLO(4,2),KWAIT1(4,2) ,KHAIT2 (4) 

REAL MEMMAT 
REAL MEVEC 
REAL INMATSN 

REAL INMATRC 
INTEGER OUT 
GO TO (10,110), KPTR 

C UPDATE ANVEC 
10 CO 20 JN=1,4 

09 20 1=1,5 
IF(ANSHLOCI,JN).GT.ANVEC(I,JN))ANVEC(I,JN) = ANSHLO(I,JN) 

23 CONTINUE 
CO 30 N = 1,4 

X = 0.0 
CO 30 M= 1,4 
X = ANVEC(M,N)*X 

IF(X.EQ.4.)ANVEC(5,N) = 1.0 
33 CONTINUE 

DC 40 1=1,5 
DO 40 J N = 1,4 
AWSHLO(I,JN) = 0.0 

43 CONTINUE 
CO 50 <=1,4 

A NSHLQ(K , K) = 1.3 
53 CONTINUE 

C ZERO OUT LSTRN02 
CO 60 JT = 1,4 
DO 60 <SU3=1,4 

LSTRNQ1(JT,<SU3) = LSTRN02(JT,KSUO) 

63 CONTINUE 
CO 65 LL = 1» 4 

<#. A IT2 (LLI =K W AIT 1 (LL, 1) KHA IT1 (LL , 2) 
KKAITi (LL,2) =KWAIT 1(LL,1) 
KWAIT1 (LL ,1)=0 - 

65 CONTINUE * 
CO 70 1=1,4 ' 
OO 73 K5U0=1,4 

LSTRN02(I, KS'JB) = 0 
73 CONTINUE , 

CC 75 J1=1» 4 
00 75 <1=1,4 
IF(KNOMANS(J1,Kl).EO.2)KNOWANS(K1,J1)=2 

75 CONTINUE 

CO 33 1=1,2 
CO ?0 H=1,4 
CO 33 <L = 1,4 
N£AHS2<I,H,KL) = HEANS1(I,H,KL) 

33 CONTINUE 
00 OC M=1,2 

CO 90 JTN = 1,4 
DO 90 L=l,4 
NcANSlIM,JTN,L) = 0 
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90 CONTINUE 
IF (KPTR.EQ.l) 100,110 

100 RETURN 
C ZERO OUT OATASNT 

110 DO 120 JT=1,4 
CO 120 K S U F. = 1,4 
OATASNT <JT',KSUB) = 0.0 

120 CONTINUE 
DO 129 LM=1,4 
KWA IT2 (LH)=0 

125 CONTINUE 
OO 126 L K = 1,4 
OO 126 K M = 1,2 
KWAIT1(IK,KM) =0 

126 CONTINUE 
C ZERO OUT AN\/EC 

DO 130 1=1,5 
DO 130 JT=1,4 
A NVEC(I,JT) = 0.0 

130 CONTINUE 
00 140 K = 1,4 
AN VEC ( K , K). = 1. 

140 CONTINUE 
C ZERO OUT INMATSNT 

CO 150 1=1,6 
OO 150 JT = 1, 4 ■ 
OO 150 K= 1,5 
INMATSN(I,JT,K) =0 • . 

150 CONTINUE 
OO 155 J1= 1,4 
CO 155 K1=1,4 
IF(KNOWANS(J1,K1>.EQ.2)KNOWANS(J1,Ki)=0 

155 CONTINUE 
OO 160 1=1,5 
CO 160 JT = 1, 4 
OO 160 K=1,5 
INHATRC( I,JT , K) = 0 

160 CONTINUE 
C * ZERO MEANS 

OO 170 11=1,2 
OO 170 JT = 1,4 
OO 170 K= 1,4 
NEANS2(II,JT ,K) = 0 

170 CONTINUE 
OO 175 J=1,4 
00 175 K=1,2 
OATRTRN(K,J,2)=0ATRTRN(K,J,1) 

175 CONTINUE 
OO 100 JT= 1,4 
DO 100 KSU0 =1,4 
LSTRND1 (JT,KSUO) = 0 

100 CONTINUE 
C MOVE CU MSN T ANO RCO INTO CUMATRCO AND S NT FOR CUMULATIVE TO 

OO 190 1=1,6 
OO 190 JT = 1,4 

'OO 190 K=1,5 
CUMATSNd, JT ,K) = CUMSNT (I , JT , K) 

190 CONTINUE- 
OO 200 1=1,5 
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no zoo jt = i, 4 
GO 200 K-l,5 
CIJMATRCd, Jr ,l<> = CUMRCOd , JT,K) 

2 0.0 CONTINUE 
C ZERO CU MSN T ANO CUMRCO 

DO 210 1=1,6 
OO 210 J T = 1, 4 
OO 210 K = 1', 5 
CUHSNT(I,JT,K) = 0,0 

210 CONTINUE 
OO 220 1=1,5 
OO 220 JT=1,4 
DO 22 0 K=l,5 
CUMRCO(I,JT,K) = 0,0 

220 CONTINUE 
C HOVE TMCLKS OVER 

IF (THCLK(l).EO.l.O) 230,240 
230 T MCL K(3) = TMCLK ( 2) 

GO TO 250 
2 40 T MCL K(5) = T MCL K ( 4) 

TMCLK ( 4) = T MCLK(3 > 
TMCLK ( 3) = T'KCLK (2) 

250 T MCL K(2) = 0.0 
RETURN 
END 
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SUBROUTINE PRINT (IFLAG1,IFLAG2, I FLAG3,IFLAG4,IFLAG5,1FLAG 6,IFLAG7 
$ ,IFLAG8,IFLAG9,IFLAG10) 

INCLUDE COMMON 

COMMON TMCLK <5)' ,ANVEC(5,4> ,LSTPN01(4,4> ,L0(4),MEMMAT (4,4) ,MEVEC<4, 
% 4) , INMATSN (6,4,5) , FLO (2,2) ,LSTRND2 (4,4) , INMATRC ( 5,4,5) , C*JMANS(4 ) , 
SANSHLO(5,4),LEQ(4) ,I TEST(2,3),OATASNT (4,4) ,OSNDVEC(4),OUT,CUMSNT(6 
?, 4,5) ,CUMRCO (5,4,5) ,IHLD(4) ,IPKMAN (4,3) ,ALPHA,CUMATSN(6,4,5) , 
JCUMATRC (5,4,5) ,ME ANSI(2,4,4) ,NEA NS2(2,4,4) ,KTEST (11 , 4) , 

$ KUO WANS (4,4) , OATRT.RN (2,4,2) , REOHLO (4,2) , KWAI Ti (4 ,2) , KWA IT2 (4 ) 
REAL MEMMAT 
REAL MEVEC 
REAL INMATSN 
REAL INMATRC 
INTEGER OUT 
OIMENSION IFLAG(iO) 
IF CIFLAG1.NE.1) GO TO 10 
WRITE (33,110) 
WRITE (33,120) ((MEMMAT(IL,JL),JL=1,4),IL=1,4) 

1G IF (IFLAG2.NE.1) GO TO 20 
WRITE (33,130) 
WRITE (33,14 0) ((ME VEC(IL,JL) , JL = 1,4) ,IL=1,4) 

20 IF (IFLAG3.NE.1) GO TO 30 
WRITE (OUT,150) 
WRITE (OUT,160) (((INMATSN(IL, JL,KL),KL=1,5) ,JL=1,4) ,IL = 1,6) 

3.0 IF (IFLAG4.NE.1) GO TO 40 
WRITE (OUT,170) 
WRITE (OUT ,10 0) (( (INMATRC (IL,JL,KL) ,KL-1,5) , JL=1,4) , IL = 1,5) 

40 IF (IFLAG5.NE.1) GO TO 50 
WRITE (OUT,190) < 
WRITE (OUT, 2 00 ) ( (ANVEC(IL,JL),JL = i,4),IL = 1,5) 

50 IF (IFLAG6.NE.1) GO Tu 60 
WRITE (33,210)■(TMCLK(LL),LL=lf2) 
WRITE (9,210) (TMCLK(LL), L L = 1,2) 

60 IF (IFLAG7•N E • 1) GO TO 70 
WRITE (OUT, 220) 
WRITE .(OUT, 2 30) (({NEANS2(IL,JL , KL),KL = 1,4) ,JL = 1,4) , IL=1,2) 

70 IF (IFLAG5.NE.1) GO TO 80 
WRITE (OUT,240) 
WRITE (OUT, 250) ( (OATASNT(IL , JL) , JL=1,4) , I L= 1,4) 

80 IF (IFLAG9.NE.1) GO TO 90 
WRITE (OUT,260) 
WRITE (OUT, 270) ((LSTRN02(IL,JL) , JL=1,4) , I L=1,4) 

90 ’IF (IFLAG10.ME.1) GO TO 100 
WRITE (OUT,280) 
WRITE (OUT,290) ( (ANSHLO(IL,JL),JL-1,4),IL = 1,5) 

100 
r 

RETURN 

110 FORMAT (* MEMMAT*) 
120 FORMAT (4 F 7.4) 
130 FORMAT (* MEVEC*) 
140 -FORMAT (4F7.4) 
150 FORMAT (* INMATSN*) 

' 160 FORMAT (4(2X,5F3.Q)) 
170 FORMAT (* INMATRC*) 
180 FORMAT (4(2X,5F3 # 0) ) 
190 FORMAT . ( * AN VEC*) 

200 FORMAT (4F3.-0) 
210 FORMAT (F6.Q , 10X,F3.0) 
220 FORMAT (* NEANS2*) 



23T -l- (ma,%i3) > 
--i* r CTH?.::) 

25 r* -: - -1 t i^-z.:i 
z:: r-z.r- ! t LST5*02il 
271 FORfUT UI31 
2?: «* s _; 
251 

E*3 
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FUNCTION RNOG (ICOOE) 
NEW GENERATOR FOR COC 3200 1/19/73 
GENERATES RANDOM NO., INTEGER LENGTH OF ICOOE 
ICOOE^l SET SEEO 
ICOOE- 2 THRU 5 RETURN INTERGER, LENGTH OF ICOOE 
IF (ICOOE.GT.l) GO TO 10 
SEEO = 5G321123G567090 

10 Y r RANOOM(S EEO) 

IGEO = Y * (10**ICOOE) 
RNOG = IGEO 
END 



APPENDIX B 

.RAW AND TRANSFORMED DATA PLOTS 

This appendix contains the computer plots of both the raw and 

logarithmic transformation data from the experiments performed on 
% * 

the simulation model. The order and notation is as follows: 

I. Circle Network II. All-Channel Network 

A set of three graphs for each of three experiments 

Experiment Graphs 

1. original run 1 1.. raw data for time units per 

solution 

2. replicated run 2 

2. raw data for cumulative time 

3. replicated run 3 units per solution 

3. transformed data for rate of 

solution over time. 
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APPENDIX C 

RAW DATA FOR SIMULATED EXPERIMENT 

This appendix contains the raw data for Circle Network replica 

tion run five. Tne right column records the number of rounds for 

successive trials. After every twenty trials the probability states of 

channel selection (MEMMAT) and message choice (MEVEC) are 

recorded throughout 800 trials. 
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1 

2 
3 
4 
5 
6 
7 
3 
9 

10 

11 
12 
13 
14 
15 
16 
17 

19 
19 
20 

MEMMAT 
0 .4725 

.4918 0 • 
0 . 5 095 

■ . 5276 0 • 
ME VEC V 

. 1745 . 0 83 5 • 

. 4620 . 3 7 0 3 • 

.7121 • 6 7 4 3 • 

.9999' .9999 • 
21 
22 
23 
24 
25 
26 
27 
2T8 
29 
30 
31 
32 
3 3 
34 
3 5 
36 
37 
3 3. 
39 

.9999 
0 

. 9999 
0 

.1195 

. 4 4 3 5 

.7133 
, 9999 

13 
14 
22 
10 
17 
13 

4 
6 

15 
10 
11 
10 

7 
Q 

9 
3 

11 
7 

10 
5 

0 

99 9 9 
0 

9999 

10 1 4 
3515* 
6769 
9999 

4 

10 
14 
1'4 

13 
6 

11 
6 

6 
19 

11 
10 

14 
14 
11 
11 

6 
5 
7 
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4 0 7 

MEMMAT - 

0 .462 9 0 . 9999 
.5127 0 . 9999 0 

0 .5 08 3 0 .999° 
. 5223 0 . 9999 0 

ME V'CC 

.2164 . 0 85 1 . 1538 ..■9976 

.4713 .3196 . 37 7 7 . 4529 

. 6953 .621 ? . 67 33 . 7 0 7 6 
. 9999 . 999 1 . 9999 . 9999 

41 9 
42 8 

43 11 

44 7 
45 3 

46 9 
47 . 12 
48 12 

49 23 
> 

50 5 
51 12 

52 1 0 
53 16 
54 6 

55 6 
5 6 7 ( 
57 5 

58 14 
59 3 
60 12 

MEMMAT 
0 .4 40 7 0 . 9999 

. 43 32 0 . 9999 0 

0 .5187 0 . 9999 

. 548 0 0 . 9999 0 
MtVEC 

. 2444 . 0 933 . 1712 , 0 848 

. 4341 .3 170 .4014 . 45 04 

■ 69 6 6 .6 165 . 66 2 3 . 6393 

. 9999 .9999 . 9999 .9999 

61 10 

62 6 

63 5 
6 4 9 
65 5 

6 6 10 

67 10 

68 6 

69 b 
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70 3 • 

71 12 

72 6 

73 10 
74 10 

75 7 

76 12 
. 77 7 

78 .6 

79 6 
80 7 

MEMMAT . • 
0 . 4764 0 . 9999 

. 4752 0 . 9999 0 
0 .4 885 0 .9999 

.5153 0 . 9999 0 

MEVEC 
. 2954 . 1 325 . 21 32 .1051 
.5137 . 3 559 . 44 21 . 4653 
. 69 09 . 6 056 . 6796 . 7029 
.9999 .9999 . .9999 .9999 / 

81 10 
82 5 

83 6 
84 12 

85 12 
86 9 
87 5 
88 4 

39 6 
90 - 5 

91 7 
92 5 
93 3 

94 20 
95 

r 
o 

96 -f 
i 

97 13 

98 6 

99 5 , 
10 0 6 

MEMMAT 
0 . 4537 0 . 9999 

. 4524 0 . 9999 0 
0 .5192 0 . 9999 

. 4873 0 . 9999 0 

MEVEC 
. 3010 .1456 . 27 27 .1272 

.5218 .3692 . 4 3 05 . 4630 

. 68 37 .6346 . 67 36 .6611 

. 9999 . 9 99 9 . 9999 . 9999 
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ini 6 

102 10 
103 7 
104 9 . 

105 6 
106 6 
107 5 

108 6 

109 • 5 
110 5 

111 6 
112 10 
113' 7 

114 6 

115 , 8 
116 • 7 

117 6 
118 8 

119 6 

120 6 
MEIMMAT 

0 . 4 345 0 . 9999 
. 4525 0 . 9999 0 

0 '. 5 40 7 0 . 9999 
.5175 0 . 9999 0 

MEVCC 
. 3614 .1779 . 35 66 . 1260 

. 5629 .3617 . 5469 .4252 

. 7405 . 6 030 . 7120 . 6266 

. 9999 .999 3 . 9999 .9999 
121 8 
122 9 
123 4 
124 9 

125 4 
126 7 

127 4 

123 3 

129 7 

130 5 
131 6 
1 32 7 

133 4 
134 5 
135 6 

136 6 * 

137 5 

133 5 

139 6 
140 5 
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MEMMAT 

0 . 4 33 3 

. 4482 0 
0 • 5 45 2 

.5254 
MEVEC 

0 

,. 40 33 . 247 1 

. 5332 .4240 

. 7551 .6 161 
. 9999 .9999 

141 

142 
14 3 * 

144 
145 
146 
147 

148 
149 

150 
151 
152 

153 
154 
155 
15 6 
157 

158 
159 
160 . . 

MEMMAT 
0 .4543 

. 4853 0 

0 .545 7 

.5319 
MEVEC 

0 

. 4897 .2813 

. 6355 . 4 29 3 

.7953 .6419 

. 9999 ,9999 
161 
162 

' 163 
164 
165 

166 
167 
163 

169 
170 

0 . 9999 
9999 0 

0 . 9999 
9999 n 

4 0 4 2 . 1655 
6066 . 4441 

75 00 .6389 
99 99 .9999 

5 
8 
6 

5 
5 
9 
7 

5 
5 
7 
4 

li 
6 
4 
5 

6 
Lx 

5 
5 

.9 

0 . 9999 
. 9999 0 

0 .9999 
. 9999 0 

. 40 82 .2131 

. 61 32 . 4634 

. 7327 . 6258 

. 99 99 . 9999 
8 
6 
5 
4 
6 
5 
9 
4 

6 
7 
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172 

173 
174 
175 

176 
177 

178 

179 
180 

MEMMAT 
0 • h647 

. 5 0 74 0 

0 .540 1 
. 5258 

MEVEC 
0 

• 5 4 6 4 . 3621 

.. 6655 . 4 826 
. 7965 .6737 

. 9999 . 9999 

191 
182 

183 
184 

195 
186 

197 
188 
189 

190 

191 

192 
193 

194 
195 
196 

197 

198 
199 
200 

MEMMAT 
0 . 4 530 

. 5051 l] 

0 .5 33 7 
.5216 

Ml VEC 

0 

.'5745 .4215 

. 6758 . 5 24 0 

. 7973 • 6 86 6 

. 9999 .9999 

7 
5 

u 
6 
5 
5 
e; 

4 

5 

0 . 9999 
. 9999 • 0 

0 . 9999 
. 99 99 0 

. 4452 . 2103 

. 6126 . 4696 
. 72 76 .6403 

. 9999 . 9999 

4 
6 
r— 
:> 
8 

6 
4 

5 
5 
6 
5 

4 
r* 
•j> 
4 

5 
5 
T / 

4 

7 
7 

4 

0 ♦ 999Q 

. 9999 0 
0 . 9999 

. 99 99 0 

. 4375 . 1989 
. 53 0 0 . 4727 

. 6967 . 6375 
. 9999 .9999 
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202 
203 
204 

205 
206 
207 

20 9 

2 0 9 
210 
211 
212 
213 

214 
215 
216 

217 
218 
219 
220 

MEMMAT 
0 . 4829 

. 5221 0 
0 . 5 04 9 

. 4994 0 

MEVEC 
. 6523 .4911 
. 7 351 .5749 

. 8 2 b 2 .7 26 9 

. 9999 .9999 
221 
222 
223 
224 

225 

226 

22 7 
22 8 
229 

230 

231 
232 
233 
234 
235 

236 
237 
238 

239 
240 

5 

4 
4 
9 

6 
7 
5 

4 

6 
5 
5 
6 
5 

4 
5 
4 

7 
4 
5 

6 

0 . 9999 

9999 0 
0 . 999Q 

9999 0 

4 4 99 . 27 20 
6202 . 4956 

7155 • 6661 
99 9 9 .9999 

6 
7 

5 
7 

5 

6 
5 
4 
5 

5 
4 

6 
5 
5 
5 
4 

8 
4 
5 

5 
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MEMMAT 
0 . 5 04 7 0 . 9999 

. 5568 0 . 9999 0 
0 .4 87 1 0 .9999 

. 4795 0 . 9999 0 
MEVEC 

. 7 0 42 . 5 30 9 .53 2 0 . 2687 

. 7747 .6 021 . 67 6 9 . 4763 

. 9521 .7492 . 7579 . 6791 

. 9999 .999 1 . 9999 .9999 

241 4. 
242 7 
243 b 

244 6 
245 5 
246 5 
247 6 
24 9 5 
249 4 

250 6 

251 4 
252 6 

253 5 
254 4 
255 4 

256 • 5 
257 3 

258 4 

259 8 

260 5 
MEMMAT 

0 .5304 0 .9999 
. 5540 0 . 9999 n 

0 , 4597 0 . 9999 

. 4718 0 . 9999 0 

MEVEC 
. 7334 .535 3 . 57 4 5 . 2953 

.8121 .594 7 . 6951 . 5 0 7 6 

. 9767 . 7 73 3 . 76 2 7 • f > 7 6 6 

. 9999 . 9999 . 9999 . 9999 

261 4 

26 2 4 

263 6 

264 5 
265 3 

266 4 

267 6 
268 4 

269 4 

270 6 
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271 

272 

273 
274 

275 
276 
277 

279 

279 
290 

MEMMAT - 

0 . 4 965 
. 6085 0 

0 .4579 
. 4 321 

ME VGC 
0 

. 7 7 77 .576 ? 

. 8433 .6263 

. 8972 . 7 94 1 

. 9999 . 999 1 
291 
292 

28 3 

284 
295 ‘ 

236 
287 
288 

299 
290 
291 
292 
293 
294 

295 
296 

297 

298 
299 
300 

MEMMAT * 

0 . 5 332 
. 6089 0 

0 . 4 46 1 
. 4423 

MEVEC 
0 

. 7743 . 5 826 

. 8302 .624 9 

. 8759 .90M 

. 9999 .9999 

4 

6 
6 
6 
4 
5 
4 

6 
5 
6 

0 . 9999 
99 99 0 

0 . 9999 
9999 0 

60 93 . 3759 
72 3 8 . 5529 
7 9 5 1 .7112 
99 99 . 9999 

4 
4 
4 

6 
4 

6 
5 
4 • 

4 
5 
4 
4 
7 
5 

5 
5 

6 

5 
4 
4 

0 . 9 9 99 
9999 0 

0 . 999° 

9999 0 

6493 .4129 
75 15 . 5635 
7995 . 7351 

9999 . 9999 
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301 

3 0 2. 
30 3 
3 0 4 

30 5 
306 
307 

3 08 
309 
310 

311 
312 
313 

314 
315 
316 

317 
318 
319 

320 
ME MMAT 

0 .5 392 
. 6088 0 

0 .4612 
. 4378 0 

MEVL'C 
. 7960 . 5 63 9 
. 3465 .6 220 

. 8379 . 3 043 

. 9999 .9999 
321 
322 

.323 
324 

325 
326 
327 

32 3 

329 
33 0 
3 31 
33 2 
33 3 
334 

33 5 
336 
337 

3 38 
339 

340 

4 

4 
4 
4 

5 
5 
5 
4 

5 
6 
5 
4 

5 

4 ' 
4 
5 

5 
4 
4 
5 

0 . 9999 
. 9999 0 

0 ,9999 
. 9989 0 

. 6451 .4501 

. 73 70 .5862 

. 73 03 .7413 

. 9999 . 9999 
5 

4 
6 
c; 

6 
3 

4 

4 
5 

5 
7 
4 

5 
5 
4 

5 

5 
5 

3 



MEMMAT 
0 .5454 

. 5880 0 
0 .4365 

. 4342 
MEVEC . 

0 

.8156 .6 05 4 

. 8612 .6399 

. 85 86 . 3 04 7 
• 9999 .9999 

341 

342 ■ • 

3 43 

344 
345 
346 
347 
348 
3 49 

350 
351 
352 

353 
354 

355 

356 

357 
358 
359 
360 

MEMMAT 

0 . 577 3 
. 5773 0 

0 .4 247 

. 4226 
ME VEC 

0 

. 8 366 .6 50 5 

. 87 7 1 .6 810 

.9102 . 3 27 0 

. 9999 .999 9 
361 

362 
36 3 

36 4 

365 
36 6 

3 6? 
368 . 

369- 

370 

0 . 9999 
99 99 0 

0 . 9999 

9999 0 

64 15 . 4649 
72 4 b . 5375 
7638 . 728 1 
9999 . 9999 

4 

4 
7 

6 
6 
5 

4 
# 
4 

4 

5 
5 
5 

5 
4 
6 

5 
5 
5 
4 
4 

0 . 9995 

. 9999 0 
0 . 9999 

. 9999 0 

. 66 32 . 4691 

. 73 66 . 57 8 1 

. 7907 . 70 23 

. 9999 . 9999 

4 

4 
5 
4 
4 
4 

5 

4 
5 

6 
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371 
372 

373 

374 
375 

376 
377 
373 
379 
380 

MEMMAT 
0 .6101 

.6102 0 

0 .4 306 
. 4094 0 

MEVEC 

. 8493 .6 776 

. 0866 . 7 05 3 

.9172 . 8 4 0 4 

. 9999 . 9999 
381 
382 

383 

334 
38 5 

386 

387 
388 

389 
390 
391 

39? 
393 
394 

395 

396 
397 

398 
399 
400 

MEMMAT 
0 .6 09 9 

. 6280 0 

0 . 3 892 
. 4473 0 

MEVFC 

. 0633 • 6 69 

. 89 75 .6 94 0 

. 9251 . 8 16 6 

. 9999 .9999 

3 ' 
4 

4 

3 
4 
tl E? 

5 
5 
6 
6 

n . 9999 
. 9999 0 

0 .9999 
. 9999 0 

. 6894 . 4710 

. 75 72 . 5 9 2 0 

. 9 0 7 0 . 7066 

. 99 9 9 .9999 
4 
4 

4 

4 
5 

5 
5 
5 
5 
4 
U 

5 

4 

5 
4 

5 
4 
5 • 

’ 0 . 9999 
99 99 0 

0 .9999 

9999 0 

6992 . 50 26 

7606 .611? 
8255 .7140 

5999 . 9999 
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40 1 
402 
40 3 

4 04 
405 

406 
40 7 
4 0 0 

409 
410 
411 

412 

413 
4 14 

415 
416 

417 
416 
419 

‘420 
MEMMAT 

0 . 6 474 

. 6644 0 
0 . 3 70 2 

.4043 0 

HE V E C 
. 8769 .5815 
. 9073 . 7 04 5 

. 9323 .8 145 

.9999 .999 3 

421 

422 > 

423 
424 

425 

426 
427 

420 
429 
430 
431 
4 32 
433 
4 34 

435 
436 

43 7 

436 
439 

440 

5 
$ 
5 

6 
4 

4 
3 

3 
4 

,4 
4 

4 

4 
4 
4 

5 
7 
6 
4 

4 

0 .9999 

9999 0 

0 . 9999 
9999 0 

72 8 1 .5116 
7 0 3 6 .6098 
04 2 3 . 7 0 33 
9999 . 999Q 

4 
4 

5 
3 
4 

4 
4 

5 
4 
5 
4 
6 
>+ 

4 

5 
4 

3 
4 
4 

4 
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MEMMAT 
0 .668 3 

. 6647 0 
0 . 3 20 0 

.4151 0 

MEVEC • 

. 8909 .699 1 

.9179 .7383 

. 9400 . 8 35 7 

. 9999 .9999 
441 

4*2 
443 
444 

445 
446 
447 

44 9 
449 
450 

451 
452 
453 

4 5 4 
4 55 

456 
457 

458 
459 

460 
MEMMAT 

0 . 6 874 

• 6645 0 
0 . 3282 

. 4265 0 
MEVEC 

. 9034 . 7334 

. 9273 

C
D

 

•
 

. 9469 . 3 54 5 
. 9999 .9999 
461 
462 
46 3 
464 

465 
466 

467 

468 
469 

470 

0 . 999° 

9999 0 

0 . 9999 
9999 0 

7395 . 5674 

78 87 . 6543 

86 0 3 . 73 72 

9999 .9999 
5 

5 
5 

4 

5 
4 
3 

4 

6 

4 

6 
5 
5 

5 
4 

4 
4 
4 
4 

4 

0 . 9 9 99 

. 9999 0 
0 . 9999 

. 9999 0 

. 7693 . 5407 

. 8128 . 6 36 5 

. 8762 .7291 

. 9999 . 9999 
■4 

4 
4 

4 
4 

4 

4 

3 

3 

4 
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472 5 

473 4 
474 5 
475 4 
476 3 
47 7 4 

478 4 
47g * 4 

430 4 
MF.MMAT • 

0 .7175 0 .9999 
♦ 6768 0 . 9999 0 

0 . 3 74 3 0 . 9999 
. 4055 0 . 9999 0 

MEVEC 
.9127 . 7 59 0 .7914 .5343 

. 9343 . 7 90 4 . 3 3 0 0 • 6 7 1 k 

. 9520 . 3 60 4 . 33 3 1 . 7552 

. 9999 . 9 999. , 9999 . 9999 

481 4 

48 2 4 
48 3 4 

484 4 
435 4 

486 4 

437 4 

480 4 

489 4 

490 3 
491 7 

492 4 

493 4 

494 4 

495 4 

496 4 
497 5 

498 4 
499 4 

500 4 

ME MMAT 
0 . 7 14 1 0 .9999 

, 6958 0 . 9999 0 

0 .3715 0 . 9999 

.3816 0 . 9999 0 

MEVEC 

.9178 .,7 73 2 . 784 1 . 609? 

. 9381 . 3 02 7 .3211 . 690 8 

. 9548 . 3762 . 87 5 1 . 7696 

. 9999 .9999 . 9999 . 9999 



501 5 
50? . 3 

503 4 
5 Off 3 
505 * 4 

506 4 

507 4 
508 - 5 

509 4 
510 4 
511 4 

512 5 
513 4 

514 5 

515 4 
516 4 
517 3 

518 4 

519 5 
520 4 

MEMMA T 

* 0 . 7 27 9 0 
.7105 0 . 9999 

0 . 3 667 0 

. 3 765 0 . 9999 
ME V EC 

. 9272 .7991 . 80 90 
. 9 452 . 8 25 3 . 94 15 
. 9600 . 890 3 . 0893 

. 9999 . 999 9 . 9999 

521 5 
522 4 

523 4 
524 4 

525 5 

526 3 

527 3 

528 4 

529 4 

53 0 4 

53 1 ' 3 

532 4 

53 3 4 

53 4 5 

535 4 

536 4 

537 4 

538 5 

539 • 4 

540 5 

. 999.9 
0 

. 9999 
0 

.'6 3 5*« 

. 70 76 

. 7959 

. 9999 



MEMMAT 
0 . 7 409 

. 7051 0 
0 . 3bl 3 

. 3715 0 
MEVtlC 

.9174 . 8 220 

. 9334 . 0452 

.9464 . 9 02 0 

. 9999 . 999 1 
54 1 
54 2 

543 
54 4 

545 
546 
547 

548 
549 
550 

551 
55 2 
553 

554 
555 
556 

557 
558 
559 

560 
MEMMAT 

0 . 757 3 

. 7244 0 
0 . 369 0 

. 3794 0 

MEVEC 

. 9283- . 8 45 5 

. 9421 . 9656 

. 9535 .9 15o 

. 9999 .9999 

561 

562 
563 

5 6 4 

565 
566 

5 6 7 

568 

569 

570 

0 . 9999 

5999 0 
0 . 9999 

9999 0 

63 0 6 .6190 
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