347 research outputs found

    Spinning straw into milk: Can a 95% byproduct diet support milk production?

    Get PDF
    Citation: Hulett, M., Ylioja, C. M., Wickersham, T. A., & Bradford, B. J. (2016). Spinning straw into milk: Can a 95% byproduct diet support milk production? Journal of Animal Science, 94, 187-187. doi:10.2527/msasas2016-400Agriculture is challenged with the need to support increasing human populations without additional land. One way the livestock industry has addressed this is by using human inedible feedstuffs, including industrial byproducts. Many dairy and feedlot diets incorporate 20–40% byproduct feeds, but few studies have evaluated responses of lactating dairy cattle to diets composed almost entirely of byproducts. Our objective was to evaluate such a diet in comparison to a more traditional lactation diet. The control diet was primarily composed of alfalfa hay, corn silage, corn gluten feed, and corn grain. The by-product diet included wheat straw, corn hominy, post-extraction algae residue, and corn gluten feed; in addition, 4% molasses was included to improve palatability. The control and by-product diets had similar concentrations of DM (50.6%) and CP (17.2%), whereas the byproduct diet included slightly more NDF (32.9 vs. 30.5%) and less fat (4.7 vs. 5.2%). Twelve Holstein cows (154 ± 20 DIM) were blocked by parity (primiparous vs. multiparous) and randomly assigned to treatment sequence in a crossover design. Diets were fed for 20 d, with data and sample collections over the final 3 d of each period. One cow was removed from byproduct diet after refusing to consume it, and data from this period were not included in the analysis. Data were analyzed with mixed models to assess fixed effects of diet, parity, and their interaction as well as the random effects of cow and period, and significance was declared at P < 0.05. The one selective cow notwithstanding, DMI was not affected by treatment. Milk yield of multiparous cows was decreased by the byproduct diet (38.7 vs. 42.3 ± 2.2 kg/d) but there was no treatment effect in primiparous cows (39.3 vs. 39.4 ± 2.2 kg/d). The byproduct diet decreased milk fat content (3.3 vs. 3.6 ± 0.12%) and tended to decrease protein content (2.94 vs. 2.99 ± 0.05%), and energy-corrected milk yield was decreased by 5.4 kg/d in multiparous cows and 1.5 kg/d in primiparous cows. No effects on BW or BCS were detected. Despite negative productivity responses, calculated recoveries of human-edible protein and energy in the diet were increased by approximately 50% with the byproduct diet, changing from a net loss to a net gain in human-edible energy and protein. A diet composed of 95% byproduct feeds supported milk yield of 39 kg/d and increased the efficiency of production from a human-edible input perspective

    Oral prion neuroinvasion occurs independently of PrPC expression in the gut epithelium

    Get PDF
    The early replication of certain prion strains within Peyer’s patches in the small intestine is essential for the efficient spread of disease to the brain after oral exposure. Our data show that orally acquired prions utilize specialized gut epithelial cells known as M cells to enter Peyer’s patches. M cells express the cellular isoform of the prion protein, PrPC, and this may be exploited by some pathogens as an uptake receptor to enter Peyer’s patches. This suggested that PrPC might also mediate the uptake and transfer of prions across the gut epithelium into Peyer’s patches in order to establish infection. Furthermore, the expression level of PrPC in the gut epithelium could influence the uptake of prions from the lumen of the small intestine. To test this hypothesis, transgenic mice were created in which deficiency in PrPC was specifically restricted to epithelial cells throughout the lining of the small intestine. Our data clearly show that efficient prion neuroinvasion after oral exposure occurred independently of PrPC expression in small intestinal epithelial cells. The specific absence of PrPC in the gut epithelium did not influence the early replication of prions in Peyer’s patches or disease susceptibility. Acute mucosal inflammation can enhance PrPC expression in the intestine, implying the potential to enhance oral prion disease pathogenesis and susceptibility. However, our data suggest that the magnitude of PrPC expression in the epithelium lining the small intestine is unlikely to be an important factor which influences the risk of oral prion disease susceptibility. IMPORTANCE The accumulation of orally acquired prions within Peyer’s patches in the small intestine is essential for the efficient spread of disease to the brain. Little is known of how the prions initially establish infection within Peyer’s patches. Some gastrointestinal pathogens utilize molecules, such as the cellular prion protein PrPC, expressed on gut epithelial cells to enter Peyer’s patches. Acute mucosal inflammation can enhance PrPC expression in the intestine, implying the potential to enhance oral prion disease susceptibility. We used transgenic mice to determine whether the uptake of prions into Peyer’s patches was dependent upon PrPC expression in the gut epithelium. We show that orally acquired prions can establish infection in Peyer’s patches independently of PrPC expression in gut epithelial cells. Our data suggest that the magnitude of PrPC expression in the epithelium lining the small intestine is unlikely to be an important factor which influences oral prion disease susceptibility

    Status of SuperSpec: A Broadband, On-Chip Millimeter-Wave Spectrometer

    Get PDF
    SuperSpec is a novel on-chip spectrometer we are developing for multi-object, moderate resolution (R = 100 - 500), large bandwidth (~1.65:1) submillimeter and millimeter survey spectroscopy of high-redshift galaxies. The spectrometer employs a filter bank architecture, and consists of a series of half-wave resonators formed by lithographically-patterned superconducting transmission lines. The signal power admitted by each resonator is detected by a lumped element titanium nitride (TiN) kinetic inductance detector (KID) operating at 100-200 MHz. We have tested a new prototype device that is more sensitive than previous devices, and easier to fabricate. We present a characterization of a representative R=282 channel at f = 236 GHz, including measurements of the spectrometer detection efficiency, the detector responsivity over a large range of optical loading, and the full system optical efficiency. We outline future improvements to the current system that we expect will enable construction of a photon-noise-limited R=100 filter bank, appropriate for a line intensity mapping experiment targeting the [CII] 158 micron transition during the Epoch of ReionizationComment: 16 pages, 10 figures, Proceedings of the SPIE Astronomical Telescopes + Instrumentation 2014 Conference, Vol 9153, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI

    A supplement containing multiple types of gluconeogenic substrates alters intake but not productivity of heat-stressed Afshari lambs

    Get PDF
    Citation: Mahjoubi, E., Amanlou, H., Yazdi, M. H., Aghaziarati, N., Noori, G. R., Vahl, C. I., . . . Baumgard, L. H. (2016). A supplement containing multiple types of gluconeogenic substrates alters intake but not productivity of heat-stressed Afshari lambs. Journal of Animal Science, 94(6), 2497-2505. doi:10.2527/jas2015-9697Thirty-two Afshari lambs were used in a completely randomized design with a 2 x 2 factorial arrangement of treatments to evaluate a nutritional supplement designed to provide multiple gluconeogenic precursors during heat stress (HS). Lambs were housed in thermal neutral (TN) conditions and fed ad libitum for 8 d to obtain covariate data (period 1 [P1]) for the subsequent experimental period (period 2 [P2]). During P2, which lasted 9 d, half of the lambs were subjected to HS and the other 16 lambs were maintained in TN conditions but pair fed (PFTN) to the HS lambs. Half of the lambs in each thermal regime were fed (top-dressed) 100 g/d of a feed supplement designed to provide gluconeogenic precursors (8 lambs in HS [heat stress with Glukosa {HSG}] and 8 lambs in PFTN [pair-fed thermal neutral with Glukosa]) and the other lambs in both thermal regimes were fed only the basal control diet (HS without Glukosa [HSC] and pair-fed thermal neutral without Glukosa). Heat stress decreased DMI (14%) and by design there were no differences between the thermal treatments, but HSG lambs had increased DMI (7.5%; P < 0.05) compared with the HSC lambs. Compared with PFTN lambs, rectal temperature and skin temperature at the rump, shoulder, and legs of HS lambs were increased (P < 0.05) at 0700 and 1400 h. Rectal temperature at 1400 h decreased for HSG lambs (0.15 +/- 0.03 degrees C; P < 0.05) compared with HSC lambs. Despite similar DMI between thermal treatments, ADG for HS and PFTN lambs in P2 was decreased 55 and 85%, respectively, compared with lambs in P1 (P < 0.01). Although the prefeeding glucose concentration was not affected by thermal treatment or diet, HSG lambs had increased postfeeding glucose concentration compared with HSC lambs (P < 0.05). In contrast to the glucose responses, circulating insulin was influenced only by thermal treatment; HS lambs had increased insulin concentration (P < 0.01) before feeding and decreased concentration (P < 0.05) after feeding compared with PFTN lambs. Heat-stressed lambs had decreased NEFA concentration before feeding (P < 0.01) but not after feeding relative to PFTN lambs. Although this nutritional strategy did not affect ADG, the lower rectal temperature in HSG lambs indicates that dietary inclusion of a mixture of glucogenic precursors can potentially benefit animal health during HS

    Effect of co-infection with a small intestine-restricted helminth pathogen on oral prion disease pathogenesis in mice

    Get PDF
    The early replication of some orally-acquired prion strains upon stromal-derived follicular dendritic cells (FDC) within the small intestinal Peyer’s patches is essential to establish host infection, and for the disease to efficiently spread to the brain. Factors that influence the early accumulation of prions in Peyer’s patches can directly influence disease pathogenesis. The host’s immune response to a gastrointestinal helminth infection can alter susceptibility to co-infection with certain pathogenic bacteria and viruses. Here we used the natural mouse small intestine-restricted helminth pathogen Heligmosomoides polygyrus to test the hypothesis that pathology specifically within the small intestine caused by a helminth co-infection would influence oral prion disease pathogenesis. When mice were co-infected with prions on d 8 after H. polygyrus infection the early accumulation of prions within Peyer’s patches was reduced and survival times significantly extended. Natural prion susceptible hosts such as sheep, deer and cattle are regularly exposed to gastrointestinal helminth parasites. Our data suggest that co-infections with small intestine-restricted helminth pathogens may be important factors that influence oral prion disease pathogenesis

    MKID development for SuperSpec: an on-chip, mm-wave, filter-bank spectrometer

    Get PDF
    SuperSpec is an ultra-compact spectrometer-on-a-chip for millimeter and submillimeter wavelength astronomy. Its very small size, wide spectral bandwidth, and highly multiplexed readout will enable construction of powerful multibeam spectrometers for high-redshift observations. The spectrometer consists of a horn-coupled microstrip feedline, a bank of narrow-band superconducting resonator filters that provide spectral selectivity, and Kinetic Inductance Detectors (KIDs) that detect the power admitted by each filter resonator. The design is realized using thin-film lithographic structures on a silicon wafer. The mm-wave microstrip feedline and spectral filters of the first prototype are designed to operate in the band from 195-310 GHz and are fabricated from niobium with at Tc of 9.2K. The KIDs are designed to operate at hundreds of MHz and are fabricated from titanium nitride with a Tc of 2K. Radiation incident on the horn travels along the mm-wave microstrip, passes through the frequency-selective filter, and is finally absorbed by the corresponding KID where it causes a measurable shift in the resonant frequency. In this proceedings, we present the design of the KIDs employed in SuperSpec and the results of initial laboratory testing of a prototype device. We will also briefly describe the ongoing development of a demonstration instrument that will consist of two 500-channel, R=700 spectrometers, one operating in the 1-mm atmospheric window and the other covering the 650 and 850 micron bands.Comment: As submitted, except that "in prep" references have been update

    Effects of postpartum treatment with non-steroidal anti-inflammatory drugs on milk production and culling risk in dairy cattle

    Get PDF
    Dairy Research, 2014 is known as Dairy Day, 2014Inflammation during early lactation is common in dairy cattle, and a high degree of inflammation during this time has recently been associated with both lower productivity and greater risk of disease during that lactation. Early lactation treatments with two non-steroidal anti-inflammatory drugs were compared with a placebo treatment to evaluate effects on whole-lactation productivity and retention in the herd. Both meloxicam and sodium salicylate increased whole-lactation milk and milk protein yields by 6 to 9%, despite being administered for only 1 or 3 days in early lactation, respectively. In addition, meloxicam treatment tended to decrease the risk of cows leaving the herd during the lactation. These results indicate that postpartum inflammatory signals have long-lasting effects on lactation in dairy cattle
    • …
    corecore