3,923 research outputs found
Applied constant gain amplification in circulating loop experiments
The reconfiguration of channel or wavelength routes in optically transparent mesh networks can lead to deviations in channel power that may impact transmission performance. A new experimental approach, applied constant gain, is used to maintain constant gain in a circulating loop enabling the study of gain error effects on long-haul transmission under reconfigured channel loading. Using this technique we examine a number of channel configurations and system tuning operations for both full-span dispersion-compensated and optimized dispersion-managed systems. For each system design, large power divergence was observed with a maximum of 15 dB at 2240 km, when switching was implemented without additional system tuning. For a bit error rate of 10-3, the maximum number of loop circulations was reduced by up to 33%
Dynamic circulating-loop methods for transmission experiments in optically transparent networks
Recent experiments incorporating multiple fast switching elements and automated system configuration in a circulating loop apparatus have enabled the study of aspects of long-haul WDM transmission unique to optically transparent networks. Techniques include per-span switching to measure the performance limits due to dispersion compensation granularity and mesh network walk-off, and applied constant-gain amplification to evaluate wavelength reconfiguration penalties
10Gbit/s modulation of a fast switching slotted Fabry-Pérot tunable laser
The device used is a three-section, 3mum wide ridge waveguide laser based on commercially available material. During the fabrication a series of slots are introduced into the front and back sections, which act as sites of internal reflections. The slots are etched to a depth that just penetrates the top of the upper waveguide resulting in an internal reflectance of-1% at each slot. The front, middle, and back sections are 180, 690 and 170 microns long respectively. In this work the back and middle sections are tied together electrically allowing simpler control of the device. By varying the applied DC currents, eight discrete channels are observed over a range of approximately 19nm
Interkingdom Gene Transfer of a Hybrid NPS/PKS from Bacteria to Filamentous Ascomycota
Nonribosomal peptides (NRPs) and polyketides (PKs) are ecologically important secondary metabolites produced by bacteria and fungi using multidomain enzymes called nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), respectively. Previous phylogenetic analyses of fungal NRPSs and PKSs have suggested that a few of these genes were acquired by fungi via horizontal gene transfer (HGT) from bacteria, including a hybrid NPS/PKS found in Cochliobolus heterostrophus (Dothideomycetes, Ascomycota). Here, we identify this hybrid gene in fungi representing two additional classes of Ascomycota (Aspergillus spp., Microsporum canis, Arthroderma spp., and Trichophyton spp., Eurotiomycetes; Chaetomium spp. and Metarhizium spp., Sordariomycetes) and use phylogenetic analyses of the most highly conserved domains from NRPSs (adenylation (A) domain) and PKSs (ketoacyl synthase (KS) domain) to examine the hypothesis that the hybrid NPS7/PKS24 was acquired by fungi from bacteria via HGT relatively early in the evolution of the Pezizomycotina. Our results reveal a unique ancestry of the A domain and KS domain in the hybrid gene relative to known fungal NRPSs and PKSs, provide strong evidence for HGT of the hybrid gene from a putative bacterial donor in the Burkholderiales, and suggest the HGT event occurred early in the evolution of the filamentous Ascomycota
A new physical interpretation of optical and infrared variability in quasars
Changing-look quasars are a recently identified class of active galaxies in
which the strong UV continuum and/or broad optical hydrogen emission lines
associated with unobscured quasars either appear or disappear on timescales of
months to years. The physical processes responsible for this behaviour are
still debated, but changes in the black hole accretion rate or accretion disk
structure appear more likely than changes in obscuration. Here we report on
four epochs of spectroscopy of SDSS J110057.70-005304.5, a quasar at a redshift
of whose UV continuum and broad hydrogen emission lines have faded,
and then returned over the past 20 years. The change in this quasar
was initially identified in the infrared, and an archival spectrum from 2010
shows an intermediate phase of the transition during which the flux below
rest-frame 3400\AA\ has decreased by close to an order of magnitude.
This combination is unique compared to previously published examples of
changing-look quasars, and is best explained by dramatic changes in the
innermost regions of the accretion disk. The optical continuum has been rising
since mid-2016, leading to a prediction of a rise in hydrogen emission line
flux in the next year. Increases in the infrared flux are beginning to follow,
delayed by a 3 year observed timescale. If our model is confirmed, the
physics of changing-look quasars are governed by processes at the innermost
stable circular orbit (ISCO) around the black hole, and the structure of the
innermost disk. The easily identifiable and monitored changing-look quasars
would then provide a new probe and laboratory of the nuclear central engine.Comment: 13 pages, 4 figures, 3 tables. Published in MNRAS. All code and data
links on GitHub, https://github.com/d80b2t/WISE_L
OHMI: The Ontology of Host-Microbiome Interactions
Host-microbiome interactions (HMIs) are critical for the modulation of biological processes and are associated with several diseases, and extensive HMI studies have generated large amounts of data. We propose that the logical representation of the knowledge derived from these data and the standardized representation of experimental variables and processes can foster integration of data and reproducibility of experiments and thereby further HMI knowledge discovery. A community-based Ontology of Host-Microbiome Interactions (OHMI) was developed following the OBO Foundry principles. OHMI leverages established ontologies to create logically structured representations of microbiomes, microbial taxonomy, host species, host anatomical entities, and HMIs under different conditions and associated study protocols and types of data analysis and experimental results
AgileDCN:An Agile Reconfigurable Optical Data Center Network Architecture
This paper presents a detailed examination of a novel data center network (DCN) that can satisfy the high capacity and low latency requirements of modern cloud computing applications. This reconfigurable architecture called AgileDCN uses fast-switching optical components with a centralized control function and workload scheduler. By providing a highly flexible optical network fabric between server racks, very high network efficiencies can be achieved even under imbalanced loading patterns. Our simulation results show that, at high (70%) loads, TCP flow completion times in the AgileDCN are significantly lower than in an equivalent electronic leaf-spine network
The first high-redshift changing-look quasars
We report on three redshift quasars with dramatic changes in their C IV
emission lines, the first sample of changing-look quasars (CLQs) at high
redshift. This is also the first time the changing-look behaviour has been seen
in a high-ionisation emission line. SDSS J1205+3422, J1638+2827, and J2228+2201
show interesting behaviour in their observed optical light curves, and
subsequent spectroscopy shows significant changes in the C IV broad emission
line, with both line collapse and emergence being displayed on rest-frame
timescales of 240-1640 days. These are rapid changes, especially when
considering virial black hole mass estimates of
for all three quasars. Continuum and emission line measurements from the three
quasars show changes in the continuum-equivalent width plane with the CLQs seen
to be on the edge of the full population distribution, and showing indications
of an intrinsic Baldwin effect. We put these observations in context with
recent state-change models, and note that even in their observed low-state, the
C IV CLQs are generally above 5\% in Eddington luminosity.Comment: 12 pages, 7 figures, 4 tables. All data, analysis code and text are
fully available at: github.com/d80b2t/CIV_CLQs. Comments, questions and
suggestions welcome and encourage
- …