6,812 research outputs found
Constructing validated clinical tools to enable the development of a new evidence base for personalised nutrition practice in obesity management
This project focused on evaluating, constructing and integrating standardised clinical data-collection tools for obesity management in personalised nutrition practice. A mixed methods research design including surveys and interviews was used. A collaborative Delphi survey method was undertaken with purposefully selected stakeholder participants, who then contributed to the construction of four new tools.
The project comprised of two research questions:
1. Is it possible and ethical to standardise a personalised approach to nutrition practice?
2. If so, what tools can be constructed and validated to help individual health history data collection, clinical decision making and clinical outcome analysis to enable the development of a case-by-case evidence base for personalised nutrition practice in the management of obesity?
Theoretical frameworks that influenced the project include: the functional medicine approach, clinical psychoneuroimmunology (cPNI), the interdisciplinary approach of systems science, pathophysiological mechanistic reasoning and translational bioinformatics. The project focused on personalised nutrition practice, which is primarily centred on nutritional therapy but also draws on the practice of dietitians, nutritionists, functional medicine and cPNI practitioners.
The research project had five stages included in the overall design. The first was a literature review undertaken to inform the project approach and tool development. The second stage involved gathering, categorising and evaluating existing tools. Surveys and interviews assessed practitioner experiences of using tools, while interviews with statisticians and academics evaluated their experiences and views on tool development to inform the development of new tools. The third stage was the Delphi method: a multi-staged, collaborative survey resulting in the development of four new clinical tools. The fourth stage was a pilot trial which aimed to achieve face validity and measure feasibility and utility for each of the four tools. The final stage included a survey and interviews which aimed to evaluate ways standardised tools could be successfully embedded into personalised nutrition practice.
The findings showed that there were few ethical concerns with utilising standardised data-collection tools in nutrition practice, but there were numerous ethical considerations in relation to the development of a case-by-case evidence base for personalised nutrition practice. It was possible to construct new tools aimed at standardising individual health history data collection and clinical outcome analysis in order to support clinical decision making, but it was not possible to validate these tools.
This project has been the first of its kind: a synthesis of different nutritional practice approaches to support the development of robust translational bioinformatics tools using pathophysiological reasoning. The results have created new knowledge in terms of understanding, defining and developing an evidence-based personalised nutrition practice approach. This could lead to major change initiatives and enhance and strengthen the nutrition profession
Dynamical System Approach to Cosmological Models with a Varying Speed of Light
Methods of dynamical systems have been used to study homogeneous and
isotropic cosmological models with a varying speed of light (VSL). We propose
two methods of reduction of dynamics to the form of planar Hamiltonian
dynamical systems for models with a time dependent equation of state. The
solutions are analyzed on two-dimensional phase space in the variables where is a function of a scale factor . Then we show how the
horizon problem may be solved on some evolutional paths. It is shown that the
models with negative curvature overcome the horizon and flatness problems. The
presented method of reduction can be adopted to the analysis of dynamics of the
universe with the general form of the equation of state .
This is demonstrated using as an example the dynamics of VSL models filled with
a non-interacting fluid. We demonstrate a new type of evolution near the
initial singularity caused by a varying speed of light. The singularity-free
oscillating universes are also admitted for positive cosmological constant. We
consider a quantum VSL FRW closed model with radiation and show that the
highest tunnelling rate occurs for a constant velocity of light if and . It is also proved that the considered class of
models is structurally unstable for the case of .Comment: 18 pages, 5 figures, RevTeX4; final version to appear in PR
Bouncing Universes with Varying Constants
We investigate the behaviour of exact closed bouncing Friedmann universes in
theories with varying constants. We show that the simplest BSBM varying-alpha
theory leads to a bouncing universe. The value of alpha increases
monotonically, remaining approximately constant during most of each cycle, but
increasing significantly around each bounce. When dissipation is introduced we
show that in each new cycle the universe expands for longer and to a larger
size. We find a similar effect for closed bouncing universes in Brans-Dicke
theory, where also varies monotonically in time from cycle to cycle.
Similar behaviour occurs also in varying speed of light theories
Cosmological Constraints on a Dynamical Electron Mass
Motivated by recent astrophysical observations of quasar absorption systems,
we formulate a simple theory where the electron to proton mass ratio is allowed to vary in space-time. In such a minimal theory only
the electron mass varies, with and kept constant. We find
that changes in will be driven by the electronic energy density after
the electron mass threshold is crossed. Particle production in this scenario is
negligible. The cosmological constraints imposed by recent astronomical
observations are very weak, due to the low mass density in electrons. Unlike in
similar theories for spacetime variation of the fine structure constant, the
observational constraints on variations in imposed by the weak
equivalence principle are much more stringent constraints than those from
quasar spectra. Any time-variation in the electron-proton mass ratio must be
less than one part in since redshifts This is more than
one thousand times smaller than current spectroscopic sensitivities can
achieve. Astronomically observable variations in the electron-proton must
therefore arise directly from effects induced by varying fine structure
'constant' or by processes associated with internal proton structure. We also
place a new upper bound of on any large-scale spatial
variation of that is compatible with the isotropy of the microwave
background radiation.Comment: New bounds from weak equivalence principle experiments added,
conclusions modifie
Direct evidence for solar wind control of Jupiter's hectometer-wavelength radio emission
Observations of the solar wind close to Jupiter, by the Voyager 1 and Voyager 2 spacecraft in 1978 and 1979, are compared with the hectometer wavelength radio emission from the planet. A significant positive correlation is found between variations in the solar wind plasma density at Jupiter and the level of Jovian radio emission output. During the 173-day interval studied for the Voyager 2 data, the radio emission displayed a long term periodicity of about 13 days, identical to that shown by the solar wind density at Jupiter and consistent with the magnetic sector structure association already proposed for groundbased observations of the decameter wavelength emission
Some Late-time Asymptotics of General Scalar-Tensor Cosmologies
We study the asymptotic behaviour of isotropic and homogeneous universes in
general scalar-tensor gravity theories containing a p=-rho vacuum fluid stress
and other sub-dominant matter stresses. It is shown that in order for there to
be approach to a de Sitter spacetime at large 4-volumes the coupling function,
omega(phi), which defines the scalar-tensor theory, must diverge faster than
|phi_infty-phi|^(-1+epsilon) for all epsilon>0 as phi rightarrow phi_infty 0
for large values of the time. Thus, for a given theory, specified by
omega(phi), there must exist some phi_infty in (0,infty) such that omega ->
infty and omega' / omega^(2+epsilon) -> 0 as phi -> 0 phi_infty in order for
cosmological solutions of the theory to approach de Sitter expansion at late
times. We also classify the possible asymptotic time variations of the
gravitation `constant' G(t) at late times in scalar-tensor theories. We show
that (unlike in general relativity) the problem of a profusion of ``Boltzmann
brains'' at late cosmological times can be avoided in scalar-tensor theories,
including Brans-Dicke theory, in which phi -> infty and omega ~ o(\phi^(1/2))
at asymptotically late times.Comment: 14 page
On the Possibility of Anisotropic Curvature in Cosmology
In addition to shear and vorticity a homogeneous background may also exhibit
anisotropic curvature. Here a class of spacetimes is shown to exist where the
anisotropy is solely of the latter type, and the shear-free condition is
supported by a canonical, massless 2-form field. Such spacetimes possess a
preferred direction in the sky and at the same time a CMB which is isotropic at
the background level. A distortion of the luminosity distances is derived and
used to test the model against the CMB and supernovae (using the Union
catalog), and it is concluded that the latter exhibit a higher-than-expected
dependence on angular position. It is shown that future surveys could detect a
possible preferred direction by observing ~ 20 / (\Omega_{k0}^2) supernovae
over the whole sky.Comment: Extended SNe analysis and corrected some CMB results. Text also
extended and references added. 8 pages, 5 figure
Cosmological milestones and energy conditions
Until recently, the physically relevant singularities occurring in FRW
cosmologies had traditionally been thought to be limited to the "big bang", and
possibly a "big crunch". However, over the last few years, the zoo of
cosmological singularities considered in the literature has become considerably
more extensive, with "big rips" and "sudden singularities" added to the mix, as
well as renewed interest in non-singular cosmological events such as "bounces"
and "turnarounds". In this talk, we present an extensive catalogue of such
cosmological milestones, both at the kinematical and dynamical level. First,
using generalized power series, purely kinematical definitions of these
cosmological events are provided in terms of the behaviour of the scale factor
a(t). The notion of a "scale-factor singularity" is defined, and its relation
to curvature singularities (polynomial and differential) is explored. Second,
dynamical information is extracted by using the Friedmann equations (without
assuming even the existence of any equation of state) to place constraints on
whether or not the classical energy conditions are satisfied at the
cosmological milestones. Since the classification is extremely general, and
modulo certain technical assumptions complete, the corresponding results are to
a high degree model-independent.Comment: 8 pages, 1 table, conference proceedings for NEB XII conference in
Nafplio, Greec
Plane-symmetric inhomogeneous Brans-Dicke cosmology with an equation of state
We present a new exact solution in Brans-Dicke theory. The solution describes
inhomogeneous plane-symmetric perfect fluid cosmological model with an equation
of state . Some main properties of the solution are discussed.Comment: 6 pages, Late
Homogeneous magnetic fields in fully anisotropic string cosmological backgrounds
We present new solutions of the string cosmological effective action in the
presence of a homogeneous Maxwell field with pure magnetic component. Exact
solutions are derived in the case of space-independent dilaton and vanishing
torsion background. In our examples the four dimensional metric is either of
Bianchi-type III and VI or Kantowski-Sachs.Comment: 4 page
- …