1,147 research outputs found

    Report for 1901

    Get PDF
    Cover title.Mode of access: Internet

    On the Possibility of Anisotropic Curvature in Cosmology

    Full text link
    In addition to shear and vorticity a homogeneous background may also exhibit anisotropic curvature. Here a class of spacetimes is shown to exist where the anisotropy is solely of the latter type, and the shear-free condition is supported by a canonical, massless 2-form field. Such spacetimes possess a preferred direction in the sky and at the same time a CMB which is isotropic at the background level. A distortion of the luminosity distances is derived and used to test the model against the CMB and supernovae (using the Union catalog), and it is concluded that the latter exhibit a higher-than-expected dependence on angular position. It is shown that future surveys could detect a possible preferred direction by observing ~ 20 / (\Omega_{k0}^2) supernovae over the whole sky.Comment: Extended SNe analysis and corrected some CMB results. Text also extended and references added. 8 pages, 5 figure

    Bouncing Anisotropic Universes with Varying Constants

    Full text link
    We examine the evolution of a closed, homogeneous and anisotropic cosmology subject to a variation of the fine structure 'constant', \alpha, within the context of the theory introduced by Bekenstein, Sandvik, Barrow and Magueijo, which generalises Maxwell's equations and general relativity. The variation of \alpha permits an effective ghost scalar field, whose negative energy density becomes dominant at small length scales, leading to a bouncing cosmology. A thermodynamically motivated coupling which describes energy exchange between the effective ghost field and the radiation field leads to an expanding, isotropizing sequence of bounces. In the absence of entropy production we also find solutions with stable anisotropic oscillations around a static universe.Comment: 9 pages, 5 figure

    Inhomogeneous Gravity

    Get PDF
    We study the inhomogeneous cosmological evolution of the Newtonian gravitational 'constant' G in the framework of scalar-tensor theories. We investigate the differences that arise between the evolution of G in the background universes and in local inhomogeneities that have separated out from the global expansion. Exact inhomogeneous solutions are found which describe the effects of masses embedded in an expanding FRW Brans-Dicke universe. These are used to discuss possible spatial variations of G in different regions. We develop the technique of matching different scalar-tensor cosmologies of different spatial curvature at a boundary. This provides a model for the linear and non-linear evolution of spherical overdensities and inhomogeneities in G. This allows us to compare the evolution of G and \dot{G} that occurs inside a collapsing overdense cluster with that in the background universe. We develop a simple virialisation criterion and apply the method to a realistic lambda-CDM cosmology containing spherical overdensities. Typically, far slower evolution of \dot{G} will be found in the bound virialised cluster than in the cosmological background. We consider the behaviour that occurs in Brans-Dicke theory and in some other representative scalar-tensor theories.Comment: 15 pages, 15 figures. Submitted to MNRAS. References adde
    • …
    corecore