7 research outputs found

    Manipulation of antigen-specific T cell responses by modified dendritic cells

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Tel: +86-21-5492-2824; Fax: +86-21-5492-2825

    No full text
    Abstract Since ancient times, unethical athletes have attempted to gain an unfair competitive advantage through the use of doping substances. A list of doping substances and methods banned in sports is published yearly by the World AntiDoping Agency (WADA). A substance or method might be included in the List if it fulfills at least two of the following criteria: enhances sports performance; represents a risk to the athlete's health; or violates the spirit of sports. This list, constantly updated to reflect new developments in the pharmaceutical industry as well as doping trends, enumerates the drug types and methods prohibited in and out of competition. Among the substances included are steroidal and peptide hormones and their modulators, stimulants, glucocorticosteroids, β2-agonists, diuretics and masking agents, narcotics, and cannabinoids. Blood doping, tampering, infusions, and gene doping are examples of prohibited methods indicated on the List. From all these, hormones constitute by far the highest number of adverse analytical findings reported by antidoping laboratories. Although to date most are due to anabolic steroids, the advent of molecular biology techniques has made recombinant peptide hormones readily available. These substances are gradually changing the landscape of doping trends. Peptide hormones like erythropoietin (EPO), human growth hormone (hGH), insulin, and insulin-like growth factor I (IGF-I) are presumed to be widely abused for performance enhancement. Furthermore, as there is a paucity of techniques suitable for their detection, peptide hormones are all the more attractive to dishonest athletes. This article will overview the use of hormones as doping substances in sports, focusing mainly on peptide hormones as they represent a pressing challenge to the current fight against doping. Hormones and hormones modulators being developed by the pharmaceutical industry, which could emerge as new doping substances, are also discussed. (Asian J Androl 2008 May; 10: 391-402

    Application of the athlete biological passport approach to the detection of growth hormone doping

    No full text
    Context: because of its anabolic and lipolytic properties, growth hormone (GH) use is prohibited in sport. Two methods based on population-derived decision limits are currently used to detect human GH (hGH) abuse: the hGH Biomarkers Test and the Isoforms Differential Immunoassay. Objective: we tested the hypothesis that longitudinal profiling of hGH biomarkers through application of the Athlete Biological Passport (ABP) has the potential to flag hGH abuse. Methods: insulin-like growth factor 1 (IGF-1) and procollagen III peptide (P-III-NP) distributions were obtained from 7 years of anti-doping data in elite athletes (n = 11 455) and applied as priors to analyze individual profiles from an hGH administration study in recreational athletes (n = 35). An open-label, randomized, single-site, placebo-controlled administration study was carried out with individuals randomly assigned to 4 arms: placebo, or 3 different doses of recombinant hGH. Serum samples were analyzed for IGF-1, P-III-NP, and hGH isoforms and the performance of a longitudinal, ABP-based approach was evaluated. Results: an ABP-based approach set at a 99% specificity level flagged 20/27 individuals receiving hGH treatment, including 17/27 individuals after cessation of the treatment. ABP sensitivity ranged from 12.5% to 71.4% across the hGH concentrations tested following 7 days of treatment, peaking at 57.1% to 100% after 21 days of treatment, and was maintained between 37.5% and 71.4% for the low and high dose groups 1 week after cessation of treatment. Conclusion: these findings demonstrate that longitudinal profiling of hGH biomarkers can provide suitable performance characteristics for use in anti-doping programs

    The proteomic signature of recombinant growth hormone in hecreational athletes

    No full text
    Objective: Administration of human growth hormone (hGH) is prohibited in competitive sport and its detection in an athlete's sample triggers an adverse analytical finding. However, the biological processes that are modulated by recombinant hGH are not well characterized and associated blood serum proteins may constitute new biomarkers for hGH misuse. Methods: Thirty-five recreational athletes were enrolled in a study to investigate the time- and dose-dependent response of serum protein levels to recombinant hGH administration. Participants were randomly assigned to 4 groups, receiving 1 of 3 different doses of recombinant hGH or a placebo. Bio samples were collected at 22 time points over a period of 13 weeks, starting 4 weeks before treatment, during 3 weeks of treatment, and at 6 weeks' follow-up. A total of 749 serum samples were analyzed for 1305 protein markers using the SOMAscan proteomics platform. Results: We identified 66 proteins that significantly associated with recombinant hGH administration and dosage, including well known hGH targets, such as IGF1, but also previously unknown hGH-related proteins (eg, protease inhibitors, WFIKKN1, and chemokines, CCL2). Network analysis revealed changes in specific biological pathways, mainly related to the immune system and glucose metabolism. Conclusion: Our analysis suggests that hGH administration affects biological processes more strongly than previously acknowledged. Some of the proteins were dysregulated even after hGH treatment and could potentially be developed into biomarkers for hGH misuse. Moreover, our findings suggest new roles for hGH-associated proteins in the etiology of hGH-related diseases and may indicate new risks that may be associated with hGH misuse.This work is supported by the Biomedical Research Program at Weill Cornell Medicine in Qatar, a program funded by the Qatar Foundation, and the World Anti-Doping Agency. K.S. was also supported by the Qatar National Research Fund (QNRF

    A novel pathway of antigen presentation by dendritic and endothelial cells: Implications for allorecognition and infectious diseases

    No full text
    Dendritic cells (DCs) are the major antigen presenting cells capable of stimulating T cell responses following either organ transplantation or a viral infection. In the context of allorecognition, T cells can be activated following presentation of alloantigens by donor DCs (direct), as well as by recipient DCs presenting processed donor major histocompatibility complex (MHC) as peptides (indirect). We have recently described another mechanism by which alloreactive T cells are activated. Recipient DCs can acquire donor MHC through cell-to-cell contact and this acquired MHC can stimulate a T cell response (the semidirect pathway). Similarly, during a viral infection, DCs are capable of stimulating T cells directly, as occurs when infected DCs present processed viral antigens, or indirectly by a process known as cross-presentation. Although cross-presentation of exogenous antigen is an important mechanism for controlling infectious diseases, it is possible that peptide:MHC acquisition (the semidirect pathway) may also play a part in immunity against pathogens. In this review, we discuss the possible contributions of the semidirect pathway/MHC transfer in infectious disease
    corecore