271 research outputs found

    Ga+, In+ and Tl+ Impurities in Alkali Halide Crystals: Distortion Trends

    Full text link
    A computational study of the doping of alkali halide crystals (AX: A = Na, K; X = Cl, Br) by ns2 cations (Ga+, In+ and Tl+) is presented. Active clusters of increasing size (from 33 to 177 ions) are considered in order to deal with the large scale distortions induced by the substitutional impurities. Those clusters are embedded in accurate quantum environments representing the surrounding crystalline lattice. The convergence of the distortion results with the size of the active cluster is analyced for some selected impurity systems. The most important conclusion from this study is that distortions along the (100) and (110) crystallographic directions are not independent. Once a reliable cluster model is found, distortion trends as a function of impurity, alkali cation and halide anion are identified and discussed. These trends may be useful when analycing other cation impurities in similar host lattices.Comment: LaTeX file. 7 pages and 2 pictures. Accepted for publication in J. Chem. Phy

    Origin of Small Barriers in Jahn–Teller Systems:Quantifying the Role of 3d–4s Hybridization in the Model System NaCl:Ni<sup>+</sup>

    Get PDF
    Despite its relevance, the microscopic origin of the energy barrier, B, between the compressed and elongated geometries of Jahn–Teller (JT) systems is not well understood yet because of a lack of quantitative data about its various contributions. Seeking to clear up this matter, we have carried out both periodic and cluster ab initio calculations on the model system NaCl:Ni+. This system is particularly puzzling because, according to experimental data, its barrier is much smaller than that for other d9 and d7 ions in similar lattices. All calculations performed on the model system lead, in fact, to values |B| ≀ 160 cm–1, which are certainly smaller than B = 500 cm–1 derived for NaCl:M2+ (M = Ag, Rh) or B = 1024 cm–1 obtained for KCl:Ag2+. As a salient feature, analysis of calculations carried out as a function of the QΞ (3z2 – r2) coordinate unveils the microscopic origin of the barrier. It is quantitatively proven that the elongated geometry observed for NaCl:Ni+ is due to the 3d–4s vibronic admixture, which is slightly larger than the anharmonicity in the eg JT mode that favors a compressed geometry. The existence of these two competing mechanisms explains the low value of B for the model system, contrary to cases where the complex formed by d9 or d7 ions is elastically decoupled from the host lattice. Although the magnitude of B for NaCl:Ni+ is particularly small, the tunneling splitting, 3Γ, is estimated to be below 9 cm–1, thus explaining why the coherence is easily destroyed by random strains and thus a static JT effect is observed experimentally. As a main conclusion, the barrier in JT systems cannot be understood neglecting the tiny changes of the electronic density involved in small distortions. The present calculations reasonably explain the experimental g tensor of NaCl:Ni+, pointing out that the d–d transitions in NiCl65– are much smaller than those for CuCl64– and the optical electronegativity of Ni+ is only around 1.</p

    Optimizing omnidirectional reflection by multilayer mirrors

    Full text link
    Periodic layered media can reflect strongly for all incident angles and polarizations in a given frequency range. Quarter-wave stacks at normal incidence are commonplace in the design of such omnidirectional reflectors. We discuss alternative design criteria to optimize these systems.Comment: 9 pages, 6 figures. To be published in J. Opt. A: Pure and Applied Optic

    Association of single and joint metals with albuminuria and estimated glomerular filtration longitudinal change in middle-aged adults from Spain: The Aragon workers health study

    Get PDF
    The nephrotoxicity of low-chronic metal exposures is unclear, especially considering several metals simultaneously. We assessed the individual and joint association of metals with longitudinal change in renal endpoints in Aragon Workers Health Study participants with available measures of essential (cobalt [Co], copper [Cu], molybdenum [Mo] and zinc [Zn]) and non-essential (As, barium [Ba], Cd, chromium [Cr], antimony [Sb], titanium [Ti], uranium [U], vanadium [V] and tungsten [W]) urine metals and albumin-to-creatinine ratio (ACR) (N = 707) and estimated glomerular filtration rate (eGFR) (N = 1493) change. Median levels were 0.24, 7.0, 18.6, 295, 3.1, 1.9, 0.28, 1.16, 9.7, 0.66, 0.22 ÎŒg/g for Co, Cu, Mo, Zn, As, Ba, Cd, Cr, Sb, Ti, V and W, respectively, and 52.5 and 27.2 ng/g for Sb and U, respectively. In single metal analysis, higher As, Cr and W concentrations were associated with increasing ACR annual change. Higher Zn, As and Cr concentrations were associated with decreasing eGFR annual change. The shape of the longitudinal dose-responses, however, was compatible with a nephrotoxic role for all metals, both in ACR and eGFR models. In joint metal analysis, both higher mixtures of Cu–Zn–As–Ba–Ti–U–V–W and Co–Cd–Cr–Sb–V–W showed associations with increasing ACR and decreasing eGFR annual change. As and Cr were main drivers of the ACR change joint metal association. For the eGFR change joint metal association, while Zn and Cr were main drivers, other metals also contributed substantially. We identified potential interactions for As, Zn and W by other metals with ACR change, but not with eGFR change. Our findings support that Zn, As, Cr and W and suggestively other metals, are nephrotoxic at relatively low exposure levels. Metal exposure reduction and mitigation interventions may improve prevention and decrease the burden of renal disease in the population

    The ATLAS Data Quality Defect Database System

    Get PDF
    The ATLAS experiment at the Large Hadron Collider has implemented a new system for recording information on detector status and data quality, and for transmitting this information to users performing physics analysis. This system revolves around the concept of "defects," which are well-defined, fine-grained, unambiguous occurrences affecting the quality of recorded data. The motivation, implementation, and operation of this system is described.Comment: 6 pages, 3 figures, published in EPJ C. (v2: as published

    Biases in study design, implementation, and data analysis that distort the appraisal of clinical benefit and ESMO-Magnitude of Clinical Benefit Scale (ESMO-MCBS) scoring

    Get PDF
    BACKGROUND: The European Society for Medical Oncology-Magnitude of Clinical Benefit Scale (ESMO-MCBS) is a validated, widely used tool developed to score the clinical benefit from cancer medicines reported in clinical trials. ESMO-MCBS scores assume valid research methodologies and quality trial implementation. Studies incorporating flawed design, implementation, or data analysis may generate outcomes that exaggerate true benefit and are not generalisable. Failure to either indicate or penalise studies with bias undermines the intention and diminishes the integrity of ESMO-MCBS scores. This review aimed to evaluate the adequacy of the ESMO-MCBS to address bias generated by flawed design, implementation, or data analysis and identify shortcomings in need of amendment. METHODS: As part of a refinement of the ESMO-MCBS, we reviewed trial design, implementation, and data analysis issues that could bias the results. For each issue of concern, we reviewed the ESMO-MCBS v1.1 approach against standards derived from Helsinki guidelines for ethical human research and guidelines from the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use, the Food and Drugs Administration, the European Medicines Agency, and European Network for Health Technology Assessment. RESULTS: Six design, two implementation, and two data analysis and interpretation issues were evaluated and in three, the ESMO-MCBS provided adequate protections. Seven shortcomings in the ability of the ESMO-MCBS to identify and address bias were identified. These related to (i) evaluation of the control arm, (ii) crossover issues, (iii) criteria for non-inferiority, (iv) substandard post-progression treatment, (v) post hoc subgroup findings based on biomarkers, (vi) informative censoring, and (vii) publication bias against quality-of-life data. CONCLUSION: Interpretation of the ESMO-MCBS scores requires critical appraisal of trials to understand caveats in trial design, implementation, and data analysis that may have biased results and conclusions. These will be addressed in future iterations of the ESMO-MCBS.SCOPUS: re.jinfo:eu-repo/semantics/publishe
    • 

    corecore