92 research outputs found

    NK1-receptor-expressing paraventricular nucleus neurones modulate daily variation in heart rate and stress-induced changes in heart rate variability

    Get PDF
    The paraventricular nucleus of the hypothalamus (PVN) is an established centre of cardiovascular control, receiving projections from other nuclei of the hypothalamus such as the dorsomedial hypothalamus and the suprachiasmatic nucleus. The PVN contains a population of “pre-autonomic neurones” which project to the intermediolateralis of the spinal cord and increase sympathetic activity, blood pressure and heart rate. These spinally projecting neurones express a number of membrane receptors including GABA and substance P NK1 receptors. Activation of NK1 expressing neurones increases heart rate, blood pressure and sympathetic activity. However, their role in the pattern of overall of cardiovascular control remains unknown. In this work we use specific saporin lesion of NK1 expressing PVN rat neurones with SSP-SAP and telemetrically measure resting heart rate and heart rate variability (HRV) parameters in response to mild psychological stress. The HRV parameter “low frequency/high frequency ratio” is often used as an indicator of sympathetic activity and is significantly increased with psychological stress in control rats (0.84 ± 0.14 to 2.02 ± 0.15; p0.05; n=3). We also find a shift in daily variation of heart rate rhythm and conclude that NK1 expressing PVN neurones are involved with coupling of the cardiovascular system to daily heart rate variation and the sympathetic response to psychological stress

    High hopes for cannabinoid agonists in the treatment of rheumatic diseases

    Get PDF
    There are two well-characterised isoforms of cannabinoid receptor; CB(1) and CB(2) and of these CB(2) is under active investigation as a potential target for treatment of the chronic pain associated with widespread and intractable joint diseases osteoarthritis and rheumatoid arthritis. The recent report by Fukuda et al (BMC Musculoskelet Disord15: 275, 2014) in BMC Musculoskeletal Disorders investigates the efficacy of a selective CB(2) agonist, JW133, in both in vitro and in vivo models of rheumatoid arthritis and provides encouraging data. The report shows that JW133 inhibits expression of the CCL2 cytokine, osteoclastogenesis and reduces histological indicators of joint degeneration. Each of these could potentially contribute to beneficial analgesic effects in a therapeutic context. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2474-15-410) contains supplementary material, which is available to authorized users

    The Emerging Chondrocyte Channelome

    Get PDF
    Chondrocytes are the resident cells of articular cartilage and are responsible for synthesizing a range of collagenous and non-collagenous extracellular matrix macromolecules. Whilst chondrocytes exist at low densities in the tissue (1–10% of the total tissue volume in mature cartilage) they are extremely active cells and are capable of responding to a range of mechanical and biochemical stimuli. These responses are necessary for the maintenance of viable cartilage and may be compromised in inflammatory diseases such as arthritis. Although chondrocytes are non-excitable cells their plasma membrane contains a rich complement of ion channels. This diverse channelome appears to be as complex as one might expect to find in excitable cells although, in the case of chondrocytes, their functions are far less well understood. The ion channels so far identified in chondrocytes include potassium channels (KATP, BK, Kv, and SK), sodium channels (epithelial sodium channels, voltage activated sodium channels), transient receptor potential calcium or non-selective cation channels and chloride channels. In this review we describe this emerging channelome and discuss the possible functions of a range of chondrocyte ion channels

    Variables associated with owner perceptions of the health of their dog: Further analysis of data from a large international survey.

    Get PDF
    In a recent study (doi: 10.1371/journal.pone.0265662), associations were identified between owner-reported dog health status and diet, whereby those fed a vegan diet were perceived to be healthier. However, the study was limited because it did not consider possible confounding from variables not included in the analysis. The aim of the current study was to extend these earlier findings, using different modelling techniques and including multiple variables, to identify the most important predictors of owner perceptions of dog health. From the original dataset, two binary outcome variables were created: the 'any health problem' distinguished dogs that owners perceived to be healthy ("no") from those perceived to have illness of any severity; the 'significant illness' variable distinguished dogs that owners perceived to be either healthy or having mild illness ("no") from those perceived to have significant or serious illness ("yes"). Associations between these health outcomes and both owner-animal metadata and healthcare variables were assessed using logistic regression and machine learning predictive modelling using XGBoost. For the any health problem outcome, best-fit models for both logistic regression (area under curve [AUC] 0.842) and XGBoost (AUC 0.836) contained the variables dog age, veterinary visits and received medication, whilst owner age and breed size category also featured. For the significant illness outcome, received medication, veterinary visits, dog age and were again the most important predictors for both logistic regression (AUC 0.903) and XGBoost (AUC 0.887), whilst breed size category, education and owner age also featured in the latter. Any contribution from the dog vegan diet variable was negligible. The results of the current study extend the previous research using the same dataset and suggest that diet has limited impact on owner-perceived dog health status; instead, dog age, frequency of veterinary visits and receiving medication are most important

    TRPV4 and KCa functionally couple as osmosensors in the PVN

    Get PDF
    BACKGROUND AND PURPOSE: Transient receptor potential vanilloid type 4 (TRPV4) and calcium-activated potassium channels (KCa ) mediate osmosensing in many tissues. Both TRPV4 and KCa channels are found in the paraventricular nucleus (PVN) of the hypothalamus, an area critical for sympathetic control of cardiovascular and renal function. Here, we have investigated whether TRPV4 channels functionally couple to KCa channels to mediate osmosensing in PVN parvocellular neurones and have characterized, pharmacologically, the subtype of KCa channel involved. EXPERIMENTAL APPROACH: We investigated osmosensing roles for TRPV4 and KCa channels in parvocellular PVN neurones using cell-attached and whole-cell electrophysiology in mouse brain slices and rat isolated PVN neurons. Intracellular Ca(2+) was recorded using Fura-2AM. The system was modelled in the NEURON simulation environment. KEY RESULTS: Hypotonic saline reduced action current frequency in hypothalamic slices; a response mimicked by TRPV4 channel agonists 4αPDD (1 μM) and GSK1016790A (100 nM), and blocked by inhibitors of either TRPV4 channels (RN1734 (5 μM) and HC067047 (300 nM) or the low-conductance calcium-activated potassium (SK) channel (UCL-1684 30 nM); iberiotoxin and TRAM-34 had no effect. Our model was compatible with coupling between TRPV4 and KCa channels, predicting the presence of positive and negative feedback loops. These predictions were verified using isolated PVN neurons. Both hypotonic challenge and 4αPDD increased intracellular Ca(2+) and UCL-1684 reduced the action of hypotonic challenge. CONCLUSIONS AND IMPLICATIONS: There was functional coupling between TRPV4 and SK channels in parvocellular neurones. This mechanism contributes to osmosensing in the PVN and may provide a novel pharmacological target for the cardiovascular or renal systems

    Expression of transient receptor potential vanilloid (TRPV) channels in different passages of articular chondrocytes

    Get PDF
    Ion channels play important roles in chondrocyte mechanotransduction. The transient receptor potential vanilloid (TRPV) subfamily of ion channels consists of six members. TRPV1-4 are temperature sensitive calcium-permeable, relatively non-selective cation channels whereas TRPV5 and TRPV6 show high selectivity for calcium over other cations. In this study we investigated the effect of time in culture and passage number on the expression of TRPV4, TRPV5 and TRPV6 in articular chondrocytes isolated from equine metacarpophalangeal joints. Polyclonal antibodies raised against TRPV4, TRPV5 and TRPV6 were used to compare the expression of these channels in lysates from first expansion chondrocytes (P0) and cells from passages 1–3 (P1, P2 and P3) by western blotting. TRPV4, TRPV5 and TRPV6 were expressed in all passages examined. Immunohistochemistry and immunofluorescence confirmed the presence of these channels in sections of formalin fixed articular cartilage and monolayer cultures of methanol fixed P2 chondrocytes. TRPV5 and TRPV6 were upregulated with time and passage in culture suggesting that a shift in the phenotype of the cells in monolayer culture alters the expression of these channels. In conclusion, several TRPV channels are likely to be involved in calcium signaling and homeostasis in chondrocytes

    Elevated blood pressure, heart rate and body temperature in mice lacking the XL alpha s protein of the Gnas locus is due to increased sympathetic tone

    Get PDF
    NEW FINDINGS: What is the central question of this study? Previously, we showed that Gnasxl knock-out mice are lean and hypermetabolic, with increased sympathetic stimulation of adipose tissue. Do these mice also display elevated sympathetic cardiovascular tone? Is the brain glucagon-like peptide-1 system involved? What is the main finding and its importance? Gnasxl knock-outs have increased blood pressure, heart rate and body temperature. Heart rate variability analysis suggests an elevated sympathetic tone. The sympatholytic reserpine had stronger effects on blood pressure, heart rate and heart rate variability in knock-out compared with wild-type mice. Stimulation of the glucagon-like peptide-1 system inhibited parasympathetic tone to a similar extent in both genotypes, with a stronger associated increase in heart rate in knock-outs. Deficiency of Gnasxl increases sympathetic cardiovascular tone. Imbalances of energy homeostasis are often associated with cardiovascular complications. Previous work has shown that Gnasxl-deficient mice have a lean and hypermetabolic phenotype, with increased sympathetic stimulation of adipose tissue. The Gnasxl transcript from the imprinted Gnas locus encodes the trimeric G-protein subunit XLαs, which is expressed in brain regions that regulate energy homeostasis and sympathetic nervous system (SNS) activity. To determine whether Gnasxl knock-out (KO) mice display additional SNS-related phenotypes, we have now investigated the cardiovascular system. The Gnasxl KO mice were ∼20 mmHg hypertensive in comparison to wild-type (WT) littermates (P≤ 0.05) and hypersensitive to the sympatholytic drug reserpine. Using telemetry, we detected an increased waking heart rate in conscious KOs (630 ± 10 versus 584 ± 12 beats min(−1), KO versus WT, P≤ 0.05). Body temperature was also elevated (38.1 ± 0.3 versus 36.9 ± 0.4°C, KO versus WT, P≤ 0.05). To investigate autonomic nervous system influences, we used heart rate variability analyses. We empirically defined frequency power bands using atropine and reserpine and verified high-frequency (HF) power and low-frequency (LF) LF/HF power ratio to be indicators of parasympathetic and sympathetic activity, respectively. The LF/HF power ratio was greater in KOs and more sensitive to reserpine than in WTs, consistent with elevated SNS activity. In contrast, atropine and exendin-4, a centrally acting agonist of the glucagon-like peptide-1 receptor, which influences cardiovascular physiology and metabolism, reduced HF power equally in both genotypes. This was associated with a greater increase in heart rate in KOs. Mild stress had a blunted effect on the LF/HF ratio in KOs consistent with elevated basal sympathetic activity. We conclude that XLαs is required for the inhibition of sympathetic outflow towards cardiovascular and metabolically relevant tissues
    corecore