5 research outputs found

    Electric field formulation for thin film magnetization problems

    Full text link
    We derive a variational formulation for thin film magnetization problems in type-II superconductors written in terms of two variables, the electric field and the magnetization function. A numerical method, based on this formulation, makes it possible to accurately compute all variables of interest, including the electric field, for any value of the power in the power law current-voltage relation characterizing the superconducting material. For high power values we obtain a good approximation to the critical state model solution. Numerical simulation results are presented for simply and multiply connected films, and also for an inhomogeneous film.Comment: 15 p., submitte

    Critical State in Thin Anisotropic Superconductors of Arbitrary Shape

    Full text link
    A thin flat superconductor of arbitrary shape and with arbitrary in-plane and out-of-plane anisotropy of flux-line pinning is considered, in an external magnetic field normal to its plane. It is shown that the general three-dimensional critical state problem for this superconductor reduces to the two-dimensional problem of an infinitely thin sample of the same shape but with a modified induction dependence of the critical sheet current. The methods of solving the latter problem are well known. This finding thus enables one to study the critical states in realistic samples of high-Tc superconductors with various types of anisotropic flux-line pinning. As examples, we investigate the critical states of long strips and rectangular platelets of high-Tc superconductors with pinning either by the ab-planes or by extended defects aligned with the c-axis.Comment: 13 pages including 13 figure files in the tex
    corecore