26,535 research outputs found
Asymptotics of Relativistic Spin Networks
The stationary phase technique is used to calculate asymptotic formulae for
SO(4) Relativistic Spin Networks. For the tetrahedral spin network this gives
the square of the Ponzano-Regge asymptotic formula for the SU(2) 6j symbol. For
the 4-simplex (10j-symbol) the asymptotic formula is compared with numerical
calculations of the Spin Network evaluation. Finally we discuss the asymptotics
of the SO(3,1) 10j-symbol.Comment: 31 pages, latex. v3: minor clarification
On the causal Barrett--Crane model: measure, coupling constant, Wick rotation, symmetries and observables
We discuss various features and details of two versions of the Barrett-Crane
spin foam model of quantum gravity, first of the Spin(4)-symmetric Riemannian
model and second of the SL(2,C)-symmetric Lorentzian version in which all
tetrahedra are space-like. Recently, Livine and Oriti proposed to introduce a
causal structure into the Lorentzian Barrett--Crane model from which one can
construct a path integral that corresponds to the causal (Feynman) propagator.
We show how to obtain convergent integrals for the 10j-symbols and how a
dimensionless constant can be introduced into the model. We propose a `Wick
rotation' which turns the rapidly oscillating complex amplitudes of the Feynman
path integral into positive real and bounded weights. This construction does
not yet have the status of a theorem, but it can be used as an alternative
definition of the propagator and makes the causal model accessible by standard
numerical simulation algorithms. In addition, we identify the local symmetries
of the models and show how their four-simplex amplitudes can be re-expressed in
terms of the ordinary relativistic 10j-symbols. Finally, motivated by possible
numerical simulations, we express the matrix elements that are defined by the
model, in terms of the continuous connection variables and determine the most
general observable in the connection picture. Everything is done on a fixed
two-complex.Comment: 22 pages, LaTeX 2e, 1 figur
Asymptotics of 10j symbols
The Riemannian 10j symbols are spin networks that assign an amplitude to each
4-simplex in the Barrett-Crane model of Riemannian quantum gravity. This
amplitude is a function of the areas of the 10 faces of the 4-simplex, and
Barrett and Williams have shown that one contribution to its asymptotics comes
from the Regge action for all non-degenerate 4-simplices with the specified
face areas. However, we show numerically that the dominant contribution comes
from degenerate 4-simplices. As a consequence, one can compute the asymptotics
of the Riemannian 10j symbols by evaluating a `degenerate spin network', where
the rotation group SO(4) is replaced by the Euclidean group of isometries of
R^3. We conjecture formulas for the asymptotics of a large class of Riemannian
and Lorentzian spin networks in terms of these degenerate spin networks, and
check these formulas in some special cases. Among other things, this conjecture
implies that the Lorentzian 10j symbols are asymptotic to 1/16 times the
Riemannian ones.Comment: 25 pages LaTeX with 8 encapsulated Postscript figures. v2 has various
clarifications and better page breaks. v3 is the final version, to appear in
Classical and Quantum Gravity, and has a few minor corrections and additional
reference
Oxidation of Columbium-Chromium Alloys at Elevated Temperatures
Screening studies of the oxidation characteristics of binary alloys of columbium (Ref. 1) showed that chromium was an additive element worthy of intensive study. The screening studies showed that chromium additions were especially helpful in decreasing the oxidation rate of columbium at 10000deg C and were somewhat less beneficial at 12000deg C. It is the purpose of this investigation to study the oxidation characteristics of binary columbium-chromium alloys in more detail
Electric field formulation for thin film magnetization problems
We derive a variational formulation for thin film magnetization problems in
type-II superconductors written in terms of two variables, the electric field
and the magnetization function. A numerical method, based on this formulation,
makes it possible to accurately compute all variables of interest, including
the electric field, for any value of the power in the power law current-voltage
relation characterizing the superconducting material. For high power values we
obtain a good approximation to the critical state model solution. Numerical
simulation results are presented for simply and multiply connected films, and
also for an inhomogeneous film.Comment: 15 p., submitte
Finiteness and Dual Variables for Lorentzian Spin Foam Models
We describe here some new results concerning the Lorentzian Barrett-Crane
model, a well-known spin foam formulation of quantum gravity. Generalizing an
existing finiteness result, we provide a concise proof of finiteness of the
partition function associated to all non-degenerate triangulations of
4-manifolds and for a class of degenerate triangulations not previously shown.
This is accomplished by a suitable re-factoring and re-ordering of integration,
through which a large set of variables can be eliminated. The resulting
formulation can be interpreted as a ``dual variables'' model that uses
hyperboloid variables associated to spin foam edges in place of representation
variables associated to faces. We outline how this method may also be useful
for numerical computations, which have so far proven to be very challenging for
Lorentzian spin foam models.Comment: 15 pages, 1 figur
Hot corrosion resistance of nickel-chromium-aluminum alloys
The hot corrosion resistance of nickel-chromium-aluminum alloy was examined by cyclically oxidizing sodium sulfate coated specimens in still air at 900, 1000 and 1100 C. The compositions tested were within the ternary region: Ni; Ni-50 at.% Cr; and Ni-50 at.% Al. At each temperature the corrosion data were statistically fitted to a third order regression equation as a function of chromium and aluminum contents. Corrosion isopleths were prepared from these equations. Compositional regions with the best hot corrosion resistance were identified
Oxidation and corrosion behavior of modified-composition, low-chromium 304 stainless steel alloys
The effects of substituting less strategic elements than Cr on the oxidation and corrosion resistance of AISI 304 stainless steel were investigated. Cyclic oxidation resistance was evaluated at 870 C. Corrosion resistance was determined by exposure of specimens to a boiling copper-rich solution of copper sulfate and sulfuric acid. Alloy substitutes for Cr included Al, Mn, Mo, Si, Ti, V, Y, and misch metal. A level of about 12% Cr was the minimum amount of Cr required for adequate oxidation and corrosion resistance in the modified composition 304 stainless steels. This represents a Cr saving of at least 33%. Two alloys containing 12% Cr and 2% Al plus 2% Mo and 12% Cr plus 2.65% Si were identified as most promising for more detailed evaluation
On the feasibility of radiation sterilization of planetary spacecraft Final report
Feasibility study for X-ray or gamma ray sterilization of spacecraft - radiation effect
Handbook of space environmental effects on solar cell power systems
Space environmental effects on solar cell power systems for earth satellite
- …