944 research outputs found

    Computation in generalised probabilistic theories

    Get PDF
    From the existence of an efficient quantum algorithm for factoring, it is likely that quantum computation is intrinsically more powerful than classical computation. At present, the best upper bound known for the power of quantum computation is that BQP is in AWPP. This work investigates limits on computational power that are imposed by physical principles. To this end, we define a circuit-based model of computation in a class of operationally-defined theories more general than quantum theory, and ask: what is the minimal set of physical assumptions under which the above inclusion still holds? We show that given only an assumption of tomographic locality (roughly, that multipartite states can be characterised by local measurements), efficient computations are contained in AWPP. This inclusion still holds even without assuming a basic notion of causality (where the notion is, roughly, that probabilities for outcomes cannot depend on future measurement choices). Following Aaronson, we extend the computational model by allowing post-selection on measurement outcomes. Aaronson showed that the corresponding quantum complexity class is equal to PP. Given only the assumption of tomographic locality, the inclusion in PP still holds for post-selected computation in general theories. Thus in a world with post-selection, quantum theory is optimal for computation in the space of all general theories. We then consider if relativised complexity results can be obtained for general theories. It is not clear how to define a sensible notion of an oracle in the general framework that reduces to the standard notion in the quantum case. Nevertheless, it is possible to define computation relative to a `classical oracle'. Then, we show there exists a classical oracle relative to which efficient computation in any theory satisfying the causality assumption and tomographic locality does not include NP.Comment: 14+9 pages. Comments welcom

    Is a Duty to Pay Tax Inherent in Affirmations of Human Rights?

    Full text link
    The United Nations’ Universal Declaration of Human Rights 1948 (the Universal Declaration), as the preeminent statement of human rights, informs numerous cognate covenants and declarations of rights, and charters of rights included in national constitutions. Unlike the rights declarations of the Enlightenment, the Universal Declaration affirms broad welfare rights, in addition to civil and political rights. No right or set of rights is superior to another; they are indivisible, interdependent and interrelated. Declarations of rights may also include duties. The Organization of American States’ American Declaration of the Rights and Duties of Man 1948 (“the American Declaration”), for example, includes statements about broad civic and social duties, and a specific list of duties that approximately reciprocate the rights affirmed. The American Declaration, which was concluded eight months before, and influenced the drafting of, the Universal Declaration, affirms a duty to pay tax. Article 29(1) of the Universal Declaration includes a general duties provision: “Everyone has duties to the community in which alone the free and full development of his personality is possible.” Do the vaguely stated duties recorded in the Universal Declaration incorporate a duty to pay tax in a way comparable to the explicit duty included in the American Declaration? In answering that question, this Article seeks to link welfare rights and duties, in particular, a duty to pay tax. The Article considers the negotiations that led to the vague formulation of article 29(1) of the Universal Declaration in order to understand why, when we may claim numerous, specific human rights that the state has undertaken to uphold and must pay for, in the major Anglophone countries, we do not have an express duty founded in human rights doctrine to pay tax

    Modeling Pauli measurements on graph states with nearest-neighbor classical communication

    Get PDF
    We propose a communication-assisted local-hidden-variable model that yields the correct outcome for the measurement of any product of Pauli operators on an arbitrary graph state, i.e., that yields the correct global correlation among the individual measurements in the Pauli product. Within this model, communication is restricted to a single round of message passing between adjacent nodes of the graph. We show that any model sharing some general properties with our own is incapable, for at least some graph states, of reproducing the expected correlations among all subsets of the individual measurements. The ability to reproduce all such correlations is found to depend on both the communication distance and the symmetries of the communication protocol.Comment: 9 pages, 2 figures. Version 2 significantly revised. Now includes a site-invariant protocol for linear chains and a proof that no limited communication protocol can correctly predict all quantum correlations for ring

    How much measurement independence is needed in order to demonstrate nonlocality?

    Full text link
    If nonlocality is to be inferred from a violation of Bell's inequality, an important assumption is that the measurement settings are freely chosen by the observers, or alternatively, that they are random and uncorrelated with the hypothetical local variables. We study the case where this assumption is weakened, so that measurement settings and local variables are at least partially correlated. As we show, there is a connection between this type of model and models which reproduce nonlocal correlations by allowing classical communication between the distant parties, and a connection with models that exploit the detection loophole. We show that even if Bob's choices are completely independent, all correlations obtained from projective measurements on a singlet can be reproduced, with the correlation (measured by mutual information) between Alice's choice and local variables less than or equal to a single bit.Comment: 5 pages, 1 figure. v2 Various improvements in presentation. Results unchange

    Security of Quantum Bit-String Generation

    Full text link
    We consider the cryptographic task of bit-string generation. This is a generalisation of coin tossing in which two mistrustful parties wish to generate a string of random bits such that an honest party can be sure that the other cannot have biased the string too much. We consider a quantum protocol for this task, originally introduced in Phys. Rev. A {\bf 69}, 022322 (2004), that is feasible with present day technology. We introduce security conditions based on the average bias of the bits and the Shannon entropy of the string. For each, we prove rigorous security bounds for this protocol in both noiseless and noisy conditions under the most general attacks allowed by quantum mechanics. Roughly speaking, in the absence of noise, a cheater can only bias significantly a vanishing fraction of the bits, whereas in the presence of noise, a cheater can bias a constant fraction, with this fraction depending quantitatively on the level of noise. We also discuss classical protocols for the same task, deriving upper bounds on how well a classical protocol can perform. This enables the determination of how much noise the quantum protocol can tolerate while still outperforming classical protocols. We raise several conjectures concerning both quantum and classical possibilities for large n cryptography. An experiment corresponding to the scheme analysed in this paper has been performed and is reported elsewhere.Comment: 16 pages. No figures. Accepted for publication in Phys. Rev. A. A corresponding experiment is reported in quant-ph/040812

    Microfluidics-based approaches to the isolation of African trypanosomes

    Get PDF
    African trypanosomes are responsible for significant levels of disease in both humans and animals. The protozoan parasites are free-living flagellates, usually transmitted by arthropod vectors, including the tsetse fly. In the mammalian host they live in the bloodstream and, in the case of human-infectious species, later invade the central nervous system. Diagnosis of the disease requires the positive identification of parasites in the bloodstream. This can be particularly challenging where parasite numbers are low, as is often the case in peripheral blood. Enriching parasites from body fluids is an important part of the diagnostic pathway. As more is learned about the physicochemical properties of trypanosomes, this information can be exploited through use of different microfluidic-based approaches to isolate the parasites from blood or other fluids. Here, we discuss recent advances in the use of microfluidics to separate trypanosomes from blood and to isolate single trypanosomes for analyses including drug screening

    A generalized no-broadcasting theorem

    Get PDF
    We prove a generalized version of the no-broadcasting theorem, applicable to essentially \emph{any} nonclassical finite-dimensional probabilistic model satisfying a no-signaling criterion, including ones with ``super-quantum'' correlations. A strengthened version of the quantum no-broadcasting theorem follows, and its proof is significantly simpler than existing proofs of the no-broadcasting theorem.Comment: 4 page

    Nonsequential positive-operator-valued measurements on entangled mixed states do not always violate a Bell inequality

    Full text link
    We present a local-hidden-variable model for positive-operator-valued measurements (an LHVPOV model) on a class of entangled generalized Werner states, thus demonstrating that such measurements do not always violate a Bell-type inequality. We also show that, in general, if the state ρ\rho' can be obtained from ρ\rho with certainty by local quantum operations without classical communication then an LHVPOV model for the state ρ\rho implies the existence of such a model for ρ\rho'.Comment: 4 pages, no figures. Title changed to accord with Phys. Rev. A version. Journal reference adde

    Genomic comparison of diverse Salmonella serovars isolated from swine.

    Get PDF
    Food animals act as a reservoir for many foodborne pathogens. Salmonella enterica is one of the leading pathogens that cause food borne illness in a broad host range including animals and humans. They can also be associated with a single host species or a subset of hosts, due to genetic factors associated with colonization and infection. Adult swine are often asymptomatic carriers of a broad range of Salmonella servoars and can act as an important reservoir of infections for humans. In order to understand the genetic variations among different Salmonella serovars, Whole Genome Sequences (WGS) of fourteen Salmonella serovars from swine products were analyzed. More than 75% of the genes were part of the core genome in each isolate and the higher fraction of gene assign to different functional categories in dispensable genes indicated that these genes acquired for better adaptability and diversity. High concordance (97%) was detected between phenotypically confirmed antibiotic resistances and identified antibiotic resistance genes from WGS. The resistance determinants were mainly located on mobile genetic elements (MGE) on plasmids or integrated into the chromosome. Most of known and putative virulence genes were part of the core genome, but a small fraction were detected on MGE. Predicted integrated phage were highly diverse and many harbored virulence, metal resistance, or antibiotic resistance genes. CRISPR (Clustered regularly interspaced short palindromic repeats) patterns revealed the common ancestry or infection history among Salmonella serovars. Overall genomic analysis revealed a great deal of diversity among Salmonella serovars due to acquired genes that enable them to thrive and survive during infection
    corecore