45 research outputs found
Phenolic Profile of Cane Sugar DerivativesExhibiting Antioxidant and Antibacterial Properties
[EN] Health beneficial effects of sugarcane have been attributed to antioxidant components present in the plant material, phenolic compounds having been identified mainly in the raw juice, culms and leaves. However, the presence of specific natural phenolic constituents in non-refined cane sugars and their potential impact on the diet as an alternative to refined sugar have not been completely evaluated. Phenolic constituents of six commercially available sugarcane derivatives (granulated jaggery, muscovado sugar, light and regular jaggery blocks, cane honey and brown sugar) were identified and quantified, in addition to their physicochemical, antioxidant and antimicrobial properties against cariogenic bacteria. Physicochemical and antioxidant properties of raw sugars were highly related to degree of refining of each product. Specific hydroxycinnamic acids (chlorogenic, caffeic, coumaric, ferulic) and flavones (apigenin, tricin, luteolin) were identified and quantified in sugarcane products. Tricin and apigenin were the most abundant phenolics in raw sugars, both considered important bioactive constituents of foods which postulate as nutraceuticals, antiproliferative and chemopreventive agents. Some derivatives and their extracts also exhibited antibacterial properties against Streptococcus mutans and Streptococcus sobrinus. Bioactive compounds identified in raw sugars make sugarcane natural sweeteners a healthier alternative to white sugar, to be used at home and industry. Granulated jaggeries postulate as the best substitutive due to their nutritional benefits and physicochemical attributes.This work was supported by the Universitat Politecnica de Valencia (UPV/PAID2010-2420) and Generalitat Valenciana (GV/2013/047). The authors would like to acknowledge both institutions for financial support.Barrera Puigdollers, C.; Betoret Valls, N.; Seguí Gil, L. (2020). Phenolic Profile of Cane Sugar DerivativesExhibiting Antioxidant and Antibacterial Properties. Sugar Tech. 22(5):798-811. https://doi.org/10.1007/s12355-020-00817-yS798811225Abbas, Syed Rizwan, Syed M. Sabir, Syed D. Ahmad, Aline A. Boligond, and Margareth L. Athayde. 2014. Phenolic profile, antioxidant potential and DNA damage protecting activity of sugarcane (Saccharum officinarum). Food Chemistry 147: 10–16. https://doi.org/10.1016/j.foodchem.2013.09.113.Akuzawa, Kazuhiko, Rie Yamada, Zhuan Li, Ying Li, Hidetaka Sadanari, Keiko Matsubara, Kunitomo Watanabe, Mamoru Koketsu, Yuuzo Tuchida, and Tsugiya Murayama. 2011. Inhibitory effects of tricin derivative from Sasa albo-marginata on replication of human cytomegalovirus. Antiviral Research 91(3): 296–303. https://doi.org/10.1016/j.antiviral.2011.06.014.Al-Fayez, Mohammad, Hong Cai, Richard Tunstall, William P. Steward, and Andreas J. Gescher. 2006. Differential modulation of cyclooxygenase-mediated prostaglandin production by the putative cancer chemopreventive flavonoids tricin, apigenin and quercetin. Cancer Chemotherapy and Pharmacology 58(6): 816–825. https://doi.org/10.1007/s00280-006-0228-3.Alves, Vanessa G., Alan G. Souza, Lucas U.R. Chiavelli, Ana L.T.G. Ruiz, Joao E. Carvalho, Armando M. Pomini, and Cleuza C. Silva. 2016. Phenolic compounds and anticancer activity of commercial sugarcane cultivated in Brazil. Anais da Academia Brasileira de Ciencias 88(3): 1201–1209. https://doi.org/10.1590/0001-3765201620150349.Amer, Said, Ki-Jeong Na, Moshira El-Abasy, Maki Motobu, Yukari Koyama, Kenji Koge, and Yoshikazu Hirota. 2004. Immunostimulating effects of sugar cane extract on X-ray radiation induced immunosuppression in the chicken. International Immunopharmacology 4(1): 71–77. https://doi.org/10.1016/j.intimp.2003.10.006.Brand-Williams, Wendy, Marie-Elisabeth Cuvelier, and Claudette Berset. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology 28(1): 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5.Cai, Hong, E. Ann Hudson, Patricia R. Mann, Richard D. Verschoyle, Peter Greaves, Margaret M. Manson, William P. Steward, and Andreas J. Gescher. 2004. Growth-inhibitory and cell cycle-arresting properties of the rice bran constituent tricin in human-derived breast cancer cells in vitro and in nude mice in vivo. British Journal of Cancer 91(7): 1364–1371. https://doi.org/10.1038/sj.bjc.6602124.Cai, Hong, David J. Boocock, William P. Steward, and Andreas J. Gescher. 2007. Tissue distribution in mice and metabolism in murine and human liver of apigenin and tricin, flavones with putative cancer chemopreventive properties. Cancer Chemotherapy and Pharmacology 60(2): 257–266. https://doi.org/10.1007/s00280-006-0368-5.Chiang, Lien-Chai, Teik Ng Lean, I-Cheng Lin, Po-Lin Kuo, and Chun-Ching Lin. 2006. Anti-proliferative effect of apigenin and its apoptotic induction in human Hep G2 cells. Cancer Letters 237(2): 207–214. https://doi.org/10.1016/j.canlet.2005.06.002.Chitnis, R., M. Abichandani, P. Nigam, L. Nahar, and S.D. Sarker. 2007. Actividad antibacteriana y antioxidante de los extractos de Piper cubeba (Piperaceae): Antioxidant and antibacterial activity of the extracts of Piper cubeba (Piperaceae). Ars Pharmaceutica 48(4): 343–350.Colombo, Renata, Fernando M. Lanças, and Janette H. Yariwake. 2006. Determination of flavonoids in cultivated sugarcane leaves, bagasse, juice and in transgenic sugarcane by liquid chromatography-UV detection. Journal of Chromatography A 1103(1): 118–124. https://doi.org/10.1016/j.chroma.2005.11.007.Cushnie, T.P.Tim, and Andew J. Lamb. 2011. Recent advances in understanding the antibacterial properties of flavonoids. International Journal of Antimicrobial Agents 38(2): 99–107. https://doi.org/10.1016/j.ijantimicag.2011.02.014.de los Mosquera, Tatiana Ángeles, and Teresa Melania Veloz Vera. 2011. Eficacia in vitro de un colutorio elaborado con aceite esencial de la hoja de ishpingo Ocotea quixos (Lam.) Kostern. Ex O.C.Schmidt y clavo de olor Syzygium aromaticum (L.) Merr. & L.M. Perry. La Granja 13(1): 31–41. https://doi.org/10.17163/lgr.n13.2011.04. (in Spanish).De Whalley, H.C.S. 1964. ICUMSA methods of sugar analysis. Amsterdam: Elsevier.Duarte-Almeida, Joaquim Mauricio, Alexis Vidal Novoa, Adyary Fallarero Linares, Franco M. Lajolo, and Maria Inés Genovese. 2006. Antioxidant activity of phenolics compounds from sugar cane (Saccharum officinarum L.) juice. Plant Foods for Human Nutrition 61: 187–192. https://doi.org/10.1007/s11130-006-0032-6.Duarte-Almeida, Joaquim Mauricio, Giuseppina Negri, Antonio Salatino, João Ernesto de Carvalho, and Franco M. Lajolo. 2007. Antiproliferative and antioxidant activities of a tricin acylated glycoside from sugarcane (Saccharum officinarum) juice. Phytochemistry 68(8): 1165–1171. https://doi.org/10.1016/j.phytochem.2007.01.015.Duarte-Almeida, Joaquim Mauricio, Antonio Salatino, Maria Inés Genovese, and Franco M. Lajolo. 2011. Phenolic composition and antioxidant activity of culms and sugarcane (Saccharum officinarum L.) products. Food Chemistry 125(2): 660–664. https://doi.org/10.1016/j.foodchem.2010.09.059.El-Abasy, Moshira, Maki Motobu, Ki-Jeong Na, Kameo Shimura, Kikuyasu Nakamura, Kenji Koge, Takashi Onodera, and Yoshikazu Hirota. 2003. Protective effects of sugar cane extracts (SCE) on Eimeria tenella infection in chickens. Journal of Veterinary Medical Science 65(8): 865–871. https://doi.org/10.1292/jvms.65.865.El-Abasy, Moshira, Maki Motobu, Kikuyasu Nakamura, Kenji Koge, Takashi Onodera, Olli Vainio, Paavo Toivanen, and Yoshikazu Hirota. 2004. Preventive and therapeutic effects of sugar cane extract on cyclophosphamide-induced immunosuppression in chickens. International Immunopharmacology 4(8): 983–990. https://doi.org/10.1016/j.intimp.2004.01.019.Guerra, Marisa J., and María V. Mujica. 2010. Physical and chemical properties of granulated cane sugar “panelas”. Ciência e Tecnologia de Alimentos 30(1): 250–257. https://doi.org/10.1590/S0101-20612010005000012.Guimarães, Carla M., Maria S. Gião, Sidónia S. Martínez, Ana I. Pintado, Manuela E. Pintado, Luis S. Bento, and F. Xabier Malcata. 2007. Antioxidant activity of sugar molasses, including protective effect against DNA oxidative damage. Journal of Food Science 72(1): 39–43. https://doi.org/10.1111/j.1750-3841.2006.00231.x.Hudson, E., P.Ann Ann, Tetsuo Kokubun Dinh, Monique S.J. Simmonds, and Andreas Gescher. 2000. Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiology, Biomarkers and Prevention 9(11): 1163–1170.Jaffé, Walter R. 2012. Health effects of non-centrifugal sugar (NCS): A review. Sugar Tech 14(2): 87–94. https://doi.org/10.1007/s12355-012-0145-1.Jaganathan, Saravana Kumar, and Mahitosh Mandal. 2009. Antiproliferative effects of honey and of its polyphenols: A review. Journal of Biomedicine and Biotechnology 830616: 13. https://doi.org/10.1155/2009/830616.Jenkins, G.Neil. 1970. Enamel protective factors in food. Journal of Dental Research 49(6): 1318–1325. https://doi.org/10.1177/00220345700490062501.Johnson, Jodee L., and Elvira Gonzalez de Mejia. 2013. Interactions between dietary flavonoids apigenin or luteolin and chemotherapeutic drugs to potentiate anti-proliferative effect on human pancreatic cancer cells, in vitro. Food and Chemical Toxicology 60: 83–91. https://doi.org/10.1016/j.fct.2013.07.036.Kadam, Ulhas S., Sukhendu B. Ghosh, Strayo Agarwal, Suprasanna Penna, T.P.A. Devasagayam, and Vishwas A. Bapat. 2008. Antioxidant activity in sugarcane juice and its protective role against radiation induced DNA damage. Food Chemistry 106(3): 1154–1160. https://doi.org/10.1016/j.foodchem.2007.07.066.Koge, Kenji, Yukie Nagai, Takeo Mizutani, Mamoru Suzuki, and Seiichi Araki. 2001. Inhibitory effects of sugar cane extracts on liver injuries in mice. Journal of the Japanese Society for Food Science and Technology 48(4): 231–237. https://doi.org/10.3136/nskkk.48.231.Lee, Jong Suk, Srinivasan Ramalingam, Il Guk Jo, Ye Som Kwon, Ashutosh Bahuguna, Oh Young Sook, O-Jun Kwon, and Myunghee Kim. 2018. Comparative study of the physicochemical, nutritional, and antioxidant properties of some commercial refined and non-centrifugal sugars. Food Research International 109: 614–625. https://doi.org/10.1016/j.foodres.2018.04.047.Lo, Dan-Yuan, Ter Hsiin Chen, Maw-Sheng Chien, Kenji Koge, Akira Hosono, Shuichi Kaminogawa, and Wei-Cheng Lee. 2005. Effects of sugar cane extract on the modulation of immunity in pigs. Journal of Veterinary Medical Science 67(6): 591–597. https://doi.org/10.1292/jvms.67.591.Luximon-Ramma, Amitabye, Theeshan Bahorun, Mohammed A. Soobrattee, and Okezie I. Aruoma. 2002. Antioxidant activities of phenolic, proanthocyanidin, and flavonoid components in extracts of Cassia fistula. Journal of Agricultural and Food Chemistry 50(18): 5042–5047. https://doi.org/10.1021/jf0201172.Moniruzzaman, Shahinuzzaaman, Ahsanul Haque, Rahima Khatun, and Zahira Yaakob. 2015. Gas chromatography mass spectrometry analysis and in vitro antibacterial activity of essential oil from Trigonella foenum-graecum. Asian Pacific Journal of Tropical Biomedicine 5(12): 1033–1036. https://doi.org/10.1016/j.apjtb.2015.09.010.Motobu, Maki, Said Amer, Yukari Koyama, Kenji Hikosaka, Toshiya Sameshima, Manabu Yamada, Kikuyasu Nakamura, Kenji Koge, Chung-Boo Kang, Hideki Hayasidani, and Yoshikazu Hirota. 2006. Protective effects of sugar cane extract on endotoxic shock in mice. Phytotherapy Research 20(5): 359–363. https://doi.org/10.1002/ptr.1860.Mujica, María Virginia, Marisa Guerra, and Naudy Soto. 2008. Effect of cane variety, washing and endpoint temperature on the quality of granulated “panela” sugarcane: Efecto de la variedad, lavado de la caña y temperatura de punteo sobre la calidad de la panela granulada. Interciencia 33(8): 598–603.Murkovic, M. 2003. Phenolic compounds (Hydroxicinammic acids). In Encyclopedia of food sciences and nutrition, 2nd ed, ed. Benjamin Caballero, 4507–4514. Cambridge, Massachussets: Academic Press. https://doi.org/10.1016/B0-12-227055-X/00914-7.Nayaka, Mysore A.Harish, Upparahalli V. Sathisha, M.P. Manohar, K.B. Chandrashekar, and Shylaja M. Dharmesh. 2009. Cytoprotective and antioxidant activity studies of jaggery sugar. Food Chemistry 115(1): 113–118. https://doi.org/10.1016/j.foodchem.2008.11.067.Noa, Miriam, Sarahi Mendoza, Rosa Mas, and Nora Aguilar Mendoza. 2002. Effect of D-003, a mixture of high molecular weight primary acids from sugar cane wax, on CL4C-induced liver acute injury in rats. Drugs Under Experimental and Clinical Research 28(5): 177–183. https://doi.org/10.1016/S0188-4409(00)00265-4.OECD/FAO. 2018. OECD-FAO Agricultural Outlook. OECD Agriculture Statistics. Retrieved from https://www.oecd-ilibrary.org/agriculture-and-food/data/oecd-agriculture-statistics_agr-data-en.Osborn, T.W.B., J.N. Noriskin, and J. Staz. 1937a. A comparison of crude and refined sugar and cereals in their ability to produce in vitro decalcification of teeth. Journal of Dental Research 16(13): 165–171. https://doi.org/10.1177/00220345370160030201.Osborn, T.W.B., J.N. Noriskin, and J. Staz. 1937b. Inhibition in vitro of decalcification in teeth. Journal of Dental Research 16(6): 545–550. https://doi.org/10.1177/00220345370160060801.Payet, Bertrand, Alain Shum Chong Sing, and Jacqueline Smadja. 2005. Assessment of antioxidant activity of cane browns sugars by ABTS and DPPH radical scavenging assays: Determination of their polyphenolic and volatile constituents. Journal of Agricultural and Food Chemistry 53(26): 10074–10079. https://doi.org/10.1021/jf0517703.Payet, Bertrand, Alain Shum Chong Sing, and Jacqueline Smadja. 2006. Comparison of the concentrations of phenolic constituents in cane sugar manufacturing products with their antioxidant activities. Journal of Agricultural and Food Chemistry 54(19): 7270–7276. https://doi.org/10.1021/jf060808o.Re, Roberta, Nicoletta Pellegrini, Anna Proteggente, Ananth Pannala, Min Yang, and Catherine Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26(9–10): 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3.Saska, Martin, B. Silvia Zossi, and Hua-liang Liu. 2010. Removal of colour in sugar cane juice clarification by defecation, sulfitation and carbonation. International Sugar Journal 112: 258–264.Sato, Yoichi, Shiho Suzaki, Takako Nishikawa, Masaru Kihara, Hiromufi Shibata, and T. Tomihiko Higuti. 2000. Phytochemical flavones isolated from Scutellaria barbata and antibacterial activity against methicillin-resistant Staphylococcus aureus. Journal of Ethnopharmacology 72(3): 483–488. https://doi.org/10.1016/S0378-8741(00)00265-8.Seguí, Lucía, Laura Calabuig-Jimenez, Noelia Betoret, and Pedro Fito. 2015. Physicochemical and antioxidant properties of non-refined sugarcane alternatives to white sugar. International Journal of Food Science & Technology 50(12): 2579–2588. https://doi.org/10.1111/ijfs.12926.Shuckla, Sanjeev, and Sanjay Gupta. 2010. Apigenin: A promising molecule for cancer prevention. Pharmaceutical Research 27(6): 962–978. https://doi.org/10.1007/s11095-010-0089-7.Singh, Amandeep. 2006. An investigation of the possible anticariogenic effect of raw sugarcane: An epidemiologic study of 12-year-old Punjabi Children, India. Panela Monitor Repository (panelamonitor.org). http://www.panelamonitor.org/documents/651/investigation-possible-anti-cariogenic-effects-raw/. Accessed July 2019.Singh, Amandeep, Uma Ranjan Lal, Hayat Muhammad Mukhtar, Prabh Simran Singh, Gagan Shah, and Ravi Khuman Dhawan. 2015. Phytochemical profile of sugarcane and its potential health aspects. Pharmacognosy Reviews 9(17): 45–54. https://doi.org/10.4103/0973-7847.156340.Singleton, Vernon L., Rudolf Orthofer, and Rosa M. Lamuela-Raventós. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology 299: 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1.Soffritti, Morando, Fiorella Belpoggi, Davide Degli Esposti, Luca Lambertini, Eva Tibaldi, and Anna Rigano. 2006. First experimental demonstration of the multipotential carcinogenic effects of aspartame administered in the feed to Sprague-Dawley rats. Environmental Health Perspectives 114(3): 379–385. https://doi.org/10.1289/ehp.8711.Takara, Kensaku, Kenji Ushijima, Koji Wada, Hironori Iwasaki, and Masatsugu Yamashita. 2007. Phenolic compounds from sugarcane molasses possessing antibacterial activity against cariogenic bacteria. Journal of Oleo Science 56(11): 611–614. https://doi.org/10.5650/jos.56.611.Tanaka, Akinobu, Hyo Jung Kim, Shojiro Oda, Kuniyoshi Shimizu, and Ryuichiro Kondo. 2011. Antibacterial activity of moso bamboo shoot skin (Phyllostachys pubescens) against Staphylococcus aureus. Journal of Wood Science 57(6): 542–544. https://doi.org/10.1007/s10086-011-1207-9.Verschoyle, Richard D., Peter Greaves, Hong Cai, Arndt Borkardt, Massimo Broggini, Maurizio D’Incalci, Ed Riccio, Rupa Doppalapudi, Izet M. Kapetanovic, William P. Sterward, and Andreas J. Gescher. 2006. Preliminary safety evaluation of the putative cancer chemopreventive agent tricin, a naturally occurring flavone. Cancer Chemoteraphy and Pharmacology 57(1): 1–6. https://doi.org/10.1007/s00280-005-0039-y.Vila, Fabiana C., Renata Colombo, Tatiana O. de Lira, and Janete H. Yariwake. 2008. HPLC microfractionation of flavones and antioxidant (radical scavenging) activity of Saccharum officinarum L. Journal of the Brazilian Chemical Society 19(5): 903–908. https://doi.org/10.1590/S0103-50532008000500014.Wojtczak, Maciej, Anta Antczak-Chrobot, and Krystyna Lisik. 2013. Contamination of commercial cane sugars by some organic acids and some inorganic anions. Food Chemistry 136(1): 193–198. https://doi.org/10.1016/j.foodchem.2012.07.036.Wolfe, Kelly, Wu Xian Zhong, and Rui Hai Liu. 2003. Antioxidant activity of apple peels. Journal of Agricultural and Food Chemistry 51(3): 609–614. https://doi.org/10.1021/jf020782a.Yamauchi, Kohen, Tonglian Buwjoom, Kenji Koge, and Tadashi Ebashi. 2006. Histological intestinal recovery in chickens refed dietary sugar cane extract. Poultry Science 85(4): 645–651. https://doi.org/10.1093/ps/85.4.645.Yazawa, Kurumi, Masahiko Kurokawa, Masatsugu Obuchi, Ying Li, Rie Yamada, Hidetaka Sadanari, Keiko Matsubara, Kunitomo Watanabe, Mamoru Koketsu, Yuuzo Tuchida, and Tsugiya Murayama. 2011. Anti-Influenza Virus Activity of Tricin, 4′,5,7-trihydroxy-3′,5′-dimethoxyflavone. Antiviral Chemistry & Chemotherapy 22(1): 1–11. https://doi.org/10.3851/IMP1782.Yoshimoto, M., R. Kurata, M. Fujii, and D.-X. Hou. 2008. In vitro and in vivo anticarcinogenesis of sugar cane vinegar. Acta Horticularae 765: 17–22. https://doi.org/10.17660/ActaHortic.2008.765.1.Zhou, Jian-Min, and Ragai K. Ibrahim. 2010. Tricin—A potential multifunctional nutraceutical. Phytochemistry Reviews 9(3): 413–424. https://doi.org/10.1007/s11101-009-9161-5
Turning Agri-Food Cooperative Vegetable Residues into Functional Powdered Ingredients for the Food Industry
[EN] Current food transformation processes must face the food waste issue by developing valorization processes to reintroduce by-products in the economic cycle and contribute to circular economy, generating social and economic value, and ensuring permanence of agricultural and rural activities. In the present paper, the results of a collaboration project between a regional agri-food cooperative and university are summarized. The project aimed to revalorize a series of vegetable wastes (carrot, leek, celery, and cabbage) from the fresh and ready-to-eat lines of the cooperative, by producing functional powders to be used as functional food ingredients. Vegetables residues were successfully transformed into functional ingredients by hot air drying or freeze-drying, and variables such as storage conditions and grinding intensity prior to drying were considered. Twenty-five vegetable powders were obtained and characterized in terms of physicochemical and antioxidant properties. Results showed that drying (mainly hot air drying) allowed obtaining stable powders, with very low water activity values, and a significantly increased functionality. Vegetable waste powders could be used in the food industry as coloring and flavoring ingredients, or natural preservatives, or either be used to reformulate processed foods in order to improve their nutritional properties.This research was funded by the regional government of Valencia (Generalitat Valenciana) under the Rural Development Program 2014¿2020 (Ayudas para la cooperación en el marco del Programa de desarrollo rural de la Comunitat Valenciana 2014¿2020. Experiencias de transformación agroalimentaria innovadoras,
especialmente vinculadas a figuras de calidad diferenciada y producción ecológica) and the Spanish Ministry of Agriculture, fisheries and food, under the European Agricultural Fund for Rural Development. Grant number AGCOOP_D/2018/025Bas-Bellver, C.; Barrera Puigdollers, C.; Betoret Valls, N.; Seguí Gil, L. (2020). Turning Agri-Food Cooperative Vegetable Residues into Functional Powdered Ingredients for the Food Industry. Sustainability. 12(4):1-15. https://doi.org/10.3390/su12041284S11512
Impact of Disruption and Drying Conditions on Physicochemical, Functional and Antioxidant Properties of Powdered Ingredients Obtained from Brassica Vegetable By-Products
[EN] Reintroducing waste products into the food chain, thus contributing to circular economy, is a key goal towards sustainable food systems. Fruit and vegetable processing generates large amounts of residual organic matter, rich in bioactive compounds. In Brassicaceae, glucosinolates are present as secondary metabolites involved in the biotic stress response. They are hydrolysed by the enzyme myrosinase when plant tissue is damaged, releasing new products (isothiocyanates) of great interest to human health. In this work, the process for obtaining powdered products from broccoli and white cabbage by-products, to be used as food ingredients, was developed. Residues produced during primary processing of these vegetables were transformed into powders by a process consisting of disruption (chopping or grinding), drying (hot-air drying at 50, 60 or 70 degrees C, or freeze drying) and final milling. The impact of processing on powders' physicochemical and functional properties was assessed in terms of their physicochemical, technological and antioxidant properties. The matrix response to drying conditions (drying kinetics), as well as the isothiocyanate (sulforaphane) content of the powders obtained were also evaluated. The different combinations applied produced powdered products, the properties of which were determined by the techniques and conditions used. Freeze drying better preserved the characteristics of the raw materials; nevertheless, antioxidant characteristics were favoured by air drying at higher temperatures and by applying a lower intensity of disruption prior to drying. Sulforaphane was identified in all samples, although processing implied a reduction in this bioactive compound. The results of the present work suggest Brassica residues may be transformed into powdered ingredients that might be used to provide additional nutritional value while contributing to sustainable development.This research was funded by the regional government of Valencia (Generalitat Valenciana) under the Rural Development Program 2014-2020 (Ayudas para la cooperacion en el marco del Programa de desarrollo rural de la Comunitat Valenciana 2014-2020. Experiencias innovadoras y sostenibles entre productores y centros de investigacion con cultivos adaptados al cambio climatico y producidos con modelos agroecologicos) and the Spanish Ministry of Agriculture, fisheries and food, under the European Agricultural Fund for Rural Development. Grant number: AGCOOP_A/2021/020.Bas-Bellver, C.; Barrera Puigdollers, C.; Betoret Valls, N.; Seguí Gil, L. (2022). Impact of Disruption and Drying Conditions on Physicochemical, Functional and Antioxidant Properties of Powdered Ingredients Obtained from Brassica Vegetable By-Products. Foods. 11(22):1-19. https://doi.org/10.3390/foods11223663119112
Survival of Lactobacillus salivarius CECT 4063 and Stability of Antioxidant Compounds in Dried Apple Snacks as Affected by the Water Activity, the Addition of Trehalose and High Pressure Homogenization
[EN] Survival of probiotic microorganisms in dried foods is optimal for water activity (a(w)) values between 0.1 and 0.3. Encapsulating and adding low-molecular weight additives can enhance probiotic viability in intermediatea(w)food products, but the effectiveness of sub-lethal homogenization is still not proven. This study evaluates the effect of 10% (w/w) trehalose addition and/or 100 MPa homogenization onLactobacillussalivariusCECT 4063 counts and antioxidant properties of apple slices dried to different water activity values (freeze-drying to aa(w)of 0.25 and air-drying at 40 degrees C to aa(w)of 0.35 and 0.45) during four-week storage. Optical and mechanical properties of dried samples were also analyzed. Freeze-drying had the least effect on the microbial counts and air drying at 40 degrees C to aa(w)of 0.35 had the greatest effect. Antioxidant properties improved with drying, especially with convective drying. Decreases in both microbial and antioxidant content during storage were favored in samples with higher water activity values. Adding trehalose improved cell survival during storage in samples with a water activity of 0.35, but 100 MPa homogenization increased the loss of viability in all cases. Air-dried samples became more translucent and reddish, rather rubbery and less crispy than freeze-dried ones.This research was funded by Generalitat Valenciana, project reference GV/2015/066 entitled "Mejora de la calidad functional de un snack con efecto probiotico y antioxidante mediante la incorporacion de trehalosa y la aplicacion de altas presiones de homogeneizacion".Burca-Busaga, CG.; Betoret Valls, N.; Seguí Gil, L.; Betoret, E.; Barrera Puigdollers, C. (2020). Survival of Lactobacillus salivarius CECT 4063 and Stability of Antioxidant Compounds in Dried Apple Snacks as Affected by the Water Activity, the Addition of Trehalose and High Pressure Homogenization. Microorganisms. 8(8):1-15. https://doi.org/10.3390/microorganisms8081095S11588Day, L., Seymour, R. B., Pitts, K. F., Konczak, I., & Lundin, L. (2009). Incorporation of functional ingredients into foods. Trends in Food Science & Technology, 20(9), 388-395. doi:10.1016/j.tifs.2008.05.002Boyer, J., & Liu, R. H. (2004). Apple phytochemicals and their health benefits. Nutrition Journal, 3(1). doi:10.1186/1475-2891-3-5Fito, P., Chiralt, A., Betoret, N., Gras, M., Cháfer, M., Martı́nez-Monzó, J., … Vidal, D. (2001). Vacuum impregnation and osmotic dehydration in matrix engineering. Journal of Food Engineering, 49(2-3), 175-183. doi:10.1016/s0260-8774(00)00220-xAssis, F. R., Rodrigues, L. G. G., Tribuzi, G., de Souza, P. G., Carciofi, B. A. M., & Laurindo, J. B. (2019). Fortified apple (Malus spp., var. Fuji) snacks by vacuum impregnation of calcium lactate and convective drying. LWT, 113, 108298. doi:10.1016/j.lwt.2019.108298Genevois, C., de Escalada Pla, M., & Flores, S. (2017). Novel strategies for fortifying vegetable matrices with iron and Lactobacillus casei simultaneously. LWT - Food Science and Technology, 79, 34-41. doi:10.1016/j.lwt.2017.01.019Betoret, E., Sentandreu, E., Betoret, N., Codoñer-Franch, P., Valls-Bellés, V., & Fito, P. (2012). Technological development and functional properties of an apple snack rich in flavonoid from mandarin juice. Innovative Food Science & Emerging Technologies, 16, 298-304. doi:10.1016/j.ifset.2012.07.003Akman, P. K., Uysal, E., Ozkaya, G. U., Tornuk, F., & Durak, M. Z. (2019). Development of probiotic carrier dried apples for consumption as snack food with the impregnation of Lactobacillus paracasei. LWT, 103, 60-68. doi:10.1016/j.lwt.2018.12.070Betoret, E., Betoret, N., Arilla, A., Bennár, M., Barrera, C., Codoñer, P., & Fito, P. (2012). No invasive methodology to produce a probiotic low humid apple snack with potential effect against Helicobacter pylori. Journal of Food Engineering, 110(2), 289-293. doi:10.1016/j.jfoodeng.2011.04.027CUI, L., NIU, L., LI, D., LIU, C., LIU, Y., LIU, C., & SONG, J. (2018). Effects of different drying methods on quality, bacterial viability and storage stability of probiotic enriched apple snacks. Journal of Integrative Agriculture, 17(1), 247-255. doi:10.1016/s2095-3119(17)61742-8Roobab, U., Batool, Z., Manzoor, M. F., Shabbir, M. A., Khan, M. R., & Aadil, R. M. (2020). Sources, formulations, advanced delivery and health benefits of probiotics. Current Opinion in Food Science, 32, 17-28. doi:10.1016/j.cofs.2020.01.003Passot, S., Cenard, S., Douania, I., Tréléa, I. C., & Fonseca, F. (2012). Critical water activity and amorphous state for optimal preservation of lyophilised lactic acid bacteria. Food Chemistry, 132(4), 1699-1705. doi:10.1016/j.foodchem.2011.06.012Vesterlund, S., Salminen, K., & Salminen, S. (2012). Water activity in dry foods containing live probiotic bacteria should be carefully considered: A case study with Lactobacillus rhamnosus GG in flaxseed. International Journal of Food Microbiology, 157(2), 319-321. doi:10.1016/j.ijfoodmicro.2012.05.016Golowczyc, M. A., Gerez, C. L., Silva, J., Abraham, A. G., De Antoni, G. L., & Teixeira, P. (2010). Survival of spray-dried Lactobacillus kefir is affected by different protectants and storage conditions. Biotechnology Letters, 33(4), 681-686. doi:10.1007/s10529-010-0491-6Nualkaekul, S., & Charalampopoulos, D. (2011). Survival of Lactobacillus plantarum in model solutions and fruit juices. International Journal of Food Microbiology, 146(2), 111-117. doi:10.1016/j.ijfoodmicro.2011.01.040Weinbreck, F., Bodnár, I., & Marco, M. L. (2010). Can encapsulation lengthen the shelf-life of probiotic bacteria in dry products? International Journal of Food Microbiology, 136(3), 364-367. doi:10.1016/j.ijfoodmicro.2009.11.004Miao, S., Mills, S., Stanton, C., Fitzgerald, G. F., Roos, Y., & Ross, R. P. (2008). Effect of disaccharides on survival during storage of freeze dried probiotics. Dairy Science and Technology, 88(1), 19-30. doi:10.1051/dst:2007003Ester, B., Noelia, B., Laura, C.-J., Francesca, P., Cristina, B., Rosalba, L., & Marco, D. R. (2019). Probiotic survival and in vitro digestion of L. salivarius spp. salivarius encapsulated by high homogenization pressures and incorporated into a fruit matrix. LWT, 111, 883-888. doi:10.1016/j.lwt.2019.05.088Bagad, M., Pande, R., Dubey, V., & Ghosh, A. R. (2017). Survivability of freeze-dried probiotic Pediococcus pentosaceus strains GS4, GS17 and Lactobacillus gasseri (ATCC 19992) during storage with commonly used pharmaceutical excipients within a period of 120 days. Asian Pacific Journal of Tropical Biomedicine, 7(10), 921-929. doi:10.1016/j.apjtb.2017.09.005Lapsiri, W., Bhandari, B., & Wanchaitanawong, P. (2012). Viability ofLactobacillus plantarumTISTR 2075 in Different Protectants during Spray Drying and Storage. Drying Technology, 30(13), 1407-1412. doi:10.1080/07373937.2012.684226Oldenhof, H., Wolkers, W. F., Fonseca, F., Passot, S., & Marin, M. (2008). Effect of Sucrose and Maltodextrin on the Physical Properties and Survival of Air-Dried Lactobacillus bulgaricus: An in Situ Fourier Transform Infrared Spectroscopy Study. Biotechnology Progress, 21(3), 885-892. doi:10.1021/bp049559jBarrera, C., Burca, C., Betoret, E., García‐Hernández, J., Hernández, M., & Betoret, N. (2019). Improving antioxidant properties and probiotic effect of clementine juice inoculated with
Lactobacillus salivarius
spp.
salivarius
(CECT 4063) by trehalose addition and/or sublethal homogenisation. International Journal of Food Science & Technology, 54(6), 2109-2122. doi:10.1111/ijfs.14116Betoret, E., Calabuig-Jiménez, L., Patrignani, F., Lanciotti, R., & Dalla Rosa, M. (2017). Effect of high pressure processing and trehalose addition on functional properties of mandarin juice enriched with probiotic microorganisms. LWT - Food Science and Technology, 85, 418-422. doi:10.1016/j.lwt.2016.10.036Luximon-Ramma, A., Bahorun, T., Crozier, A., Zbarsky, V., Datla, K. P., Dexter, D. T., & Aruoma, O. I. (2005). Characterization of the antioxidant functions of flavonoids and proanthocyanidins in Mauritian black teas. Food Research International, 38(4), 357-367. doi:10.1016/j.foodres.2004.10.005Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. doi:10.1016/s0023-6438(95)80008-5Chen, Y.-S., Srionnual, S., Onda, T., & Yanagida, F. (2007). Effects of prebiotic oligosaccharides and trehalose on growth and production of bacteriocins by lactic acid bacteria. Letters in Applied Microbiology, 45(2), 190-193. doi:10.1111/j.1472-765x.2007.02167.xLi, C., Liu, L. B., & Liu, N. (2011). Effects of carbon sources and lipids on freeze-drying survival of Lactobacillus bulgaricus in growth media. Annals of Microbiology, 62(3), 949-956. doi:10.1007/s13213-011-0332-4Betoret, N., Puente, L., Dı́az, M. ., Pagán, M. ., Garcı́a, M. ., Gras, M. ., … Fito, P. (2003). Development of probiotic-enriched dried fruits by vacuum impregnation. Journal of Food Engineering, 56(2-3), 273-277. doi:10.1016/s0260-8774(02)00268-6Santivarangkna, C., Kulozik, U., & Foerst, P. (2007). Alternative Drying Processes for the Industrial Preservation of Lactic Acid Starter Cultures. Biotechnology Progress, 23(2), 302-315. doi:10.1021/bp060268fZayed, G., & Roos, Y. H. (2004). Influence of trehalose and moisture content on survival of Lactobacillus salivarius subjected to freeze-drying and storage. Process Biochemistry, 39(9), 1081-1086. doi:10.1016/s0032-9592(03)00222-xBetoret, E., Betoret, N., Rocculi, P., & Dalla Rosa, M. (2015). Strategies to improve food functionality: Structure–property relationships on high pressures homogenization, vacuum impregnation and drying technologies. Trends in Food Science & Technology, 46(1), 1-12. doi:10.1016/j.tifs.2015.07.006Kets, E., Teunissen, P., & de Bont, J. (1996). Effect of compatible solutes on survival of lactic Acid bacteria subjected to drying. Applied and Environmental Microbiology, 62(1), 259-261. doi:10.1128/aem.62.1.259-261.1996Betoret, E., Betoret, N., Carbonell, J. V., & Fito, P. (2009). Effects of pressure homogenization on particle size and the functional properties of citrus juices. Journal of Food Engineering, 92(1), 18-23. doi:10.1016/j.jfoodeng.2008.10.028Kechagia, M., Basoulis, D., Konstantopoulou, S., Dimitriadi, D., Gyftopoulou, K., Skarmoutsou, N., & Fakiri, E. M. (2013). Health Benefits of Probiotics: A Review. ISRN Nutrition, 2013, 1-7. doi:10.5402/2013/481651Vuthijumnok, J. (2013). Effect of freeze-drying and extraction solvents on the total phenolic contents, total flavonoids and antioxidant activity of different Rabbiteye blueberry genotypes grown in New Zealand. IOSR Journal of Pharmacy and Biological Sciences, 8(1), 42-48. doi:10.9790/3008-0814248Heredia, A., Peinado, I., Barrera, C., & Grau, A. A. (2009). Influence of process variables on colour changes, carotenoids retention and cellular tissue alteration of cherry tomato during osmotic dehydration. Journal of Food Composition and Analysis, 22(4), 285-294. doi:10.1016/j.jfca.2008.11.018Seguí, L., Calabuig-Jiménez, L., Betoret, N., & Fito, P. (2015). Physicochemical and antioxidant properties of non-refined sugarcane alternatives to white sugar. International Journal of Food Science & Technology, 50(12), 2579-2588. doi:10.1111/ijfs.12926Vega-Gálvez, A., Ah-Hen, K., Chacana, M., Vergara, J., Martínez-Monzó, J., García-Segovia, P., … Di Scala, K. (2012). Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices. Food Chemistry, 132(1), 51-59. doi:10.1016/j.foodchem.2011.10.029Kurtmann, L., Carlsen, C. U., Risbo, J., & Skibsted, L. H. (2009). Storage stability of freeze–dried Lactobacillus acidophilus (La-5) in relation to water activity and presence of oxygen and ascorbate. Cryobiology, 58(2), 175-180. doi:10.1016/j.cryobiol.2008.12.001Barbosa, J., Borges, S., & Teixeira, P. (2015). Influence of sub-lethal stresses on the survival of lactic acid bacteria after spray-drying in orange juice. Food Microbiology, 52, 77-83. doi:10.1016/j.fm.2015.06.010Lim, E. M., Ehrlich, S. D., & Maguin, E. (2000). Identification of stress-inducible proteins inLactobacillus delbrueckii subsp.bulgaricus. Electrophoresis, 21(12), 2557-2561. doi:10.1002/1522-2683(20000701)21:123.0.co;2-bKilstrup, M., Jacobsen, S., Hammer, K., & Vogensen, F. K. (1997). Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in Lactococcus lactis. Applied and Environmental Microbiology, 63(5), 1826-1837. doi:10.1128/aem.63.5.1826-1837.1997Patrignani, F., & Lanciotti, R. (2016). Applications of High and Ultra High Pressure Homogenization for Food Safety. Frontiers in Microbiology, 7. doi:10.3389/fmicb.2016.01132Piretti, M. V., Gallerani, G., & Brodnik, U. (1996). Polyphenol polymerisation involvement in apple superficial scald. Postharvest Biology and Technology, 8(1), 11-18. doi:10.1016/0925-5214(95)00056-9Ma, Y., & Huang, H. (2014). Characterisation and comparison of phenols, flavonoids and isoflavones of soymilk and their correlations with antioxidant activity. International Journal of Food Science & Technology, 49(10), 2290-2298. doi:10.1111/ijfs.1254
Improving antioxidant properties and probiotic effect of clementine juice inoculated with Lactobacillus salivarius spp. salivarius (CECT 4063) by trehalose addition and/or subletal homogenisation
[EN] This study evaluates the effect of trehalose addition (10% or 20%, w/w) and/or sublethal homogenisation (25-150 MPa) on antioxidants content (vitamin C, total phenols and flavonoids) and activity (measured both by ABTS-TEAC and DPPH assays), as well as on microbial counts and survival to in vitro digestion of clementine juice inoculated with Lactobacillus salivarius spp. salivarius. Particle size, vacuum impregnation parameters and anti-Helicobacter pylori effect were also measured. Incubation with the probiotic improved the antioxidant properties of the juice. Homogenisation pressures below 100 MPa following incubation increased both the probiotic counts in the juice and its antioxidants bioaccesibility. Adding 10% (w/w) of trehalose to the juice was effective in preventing these bioactive compounds deterioration under adverse conditions. Once homogenised, liquids containing 10% (w/w) of trehalose became as able as those without trehalose to enter a food solid matrix. Inhibition of Helicobacter pylori growth was evident in all probiotic beverages.This research has been carried out with the financing granted by the Generalitat Valenciana for project GV/2015/066 "Improving the functional quality of a snack with probiotic effect and antioxidant properties through the incorporation of trehalose and the application of high homogenisation pressures".Barrera Puigdollers, C.; Burca, C.; Betoret, E.; García Hernández, J.; Hernández Pérez, M.; Betoret Valls, N. (2019). Improving antioxidant properties and probiotic effect of clementine juice inoculated with Lactobacillus salivarius spp. salivarius (CECT 4063) by trehalose addition and/or subletal homogenisation. International Journal of Food Science & Technology. 54(6):2109-2122. https://doi.org/10.1111/ijfs.14116S21092122546Aiba, Y., Suzuki, N., Kabir, A. M. A., Takagi, A., & Koga, Y. (1998). Lactic acid-mediated suppression of Helicobacter pylori by the oral administration of Lactobacillus salivarius as a probiotic in a gnotobiotic murine model. The American Journal of Gastroenterology, 93(11), 2097-2101. doi:10.1111/j.1572-0241.1998.00600.xAnekella, K., & Orsat, V. (2013). Optimization of microencapsulation of probiotics in raspberry juice by spray drying. LWT - Food Science and Technology, 50(1), 17-24. doi:10.1016/j.lwt.2012.08.003ANKOLEKAR, C., JOHNSON, K., PINTO, M., JOHNSON, D., LABBE, R. G., GREENE, D., & SHETTY, K. (2011). FERMENTATION OF WHOLE APPLE JUICE USINGLACTOBACILLUS ACIDOPHILUSFOR POTENTIAL DIETARY MANAGEMENT OF HYPERGLYCEMIA, HYPERTENSION, AND MODULATION OF BENEFICIAL BACTERIAL RESPONSES. Journal of Food Biochemistry, 36(6), 718-738. doi:10.1111/j.1745-4514.2011.00596.xAtarés, L., Chiralt, A., & González-Martínez, C. (2009). Effect of the impregnated solute on air drying and rehydration of apple slices (cv. Granny Smith). Journal of Food Engineering, 91(2), 305-310. doi:10.1016/j.jfoodeng.2008.09.008Basson, A., Flemming, L. A., & Chenia, H. Y. (2007). Evaluation of Adherence, Hydrophobicity, Aggregation, and Biofilm Development of Flavobacterium johnsoniae-Like Isolates. Microbial Ecology, 55(1), 1-14. doi:10.1007/s00248-007-9245-yBermejo, A., & Cano, A. (2012). Analysis of Nutritional Constituents in Twenty Citrus Cultivars from the Mediterranean Area at Different Stages of Ripening. Food and Nutrition Sciences, 03(05), 639-650. doi:10.4236/fns.2012.35088Betoret, N., Puente, L., Dı́az, M. ., Pagán, M. ., Garcı́a, M. ., Gras, M. ., … Fito, P. (2003). Development of probiotic-enriched dried fruits by vacuum impregnation. Journal of Food Engineering, 56(2-3), 273-277. doi:10.1016/s0260-8774(02)00268-6Betoret, E., Betoret, N., Carbonell, J. V., & Fito, P. (2009). Effects of pressure homogenization on particle size and the functional properties of citrus juices. Journal of Food Engineering, 92(1), 18-23. doi:10.1016/j.jfoodeng.2008.10.028Betoret, E., Sentandreu, E., Betoret, N., & Fito, P. (2012). Homogenization pressures applied to citrus juice manufacturing. Functional properties and application. Journal of Food Engineering, 111(1), 28-33. doi:10.1016/j.jfoodeng.2012.01.035Betoret, E., Betoret, N., Arilla, A., Bennár, M., Barrera, C., Codoñer, P., & Fito, P. (2012). No invasive methodology to produce a probiotic low humid apple snack with potential effect against Helicobacter pylori. Journal of Food Engineering, 110(2), 289-293. doi:10.1016/j.jfoodeng.2011.04.027Betoret, E., Betoret, N., Castagnini, J. M., Rocculi, P., Dalla Rosa, M., & Fito, P. (2015). Analysis by non-linear irreversible thermodynamics of compositional and structural changes occurred during air drying of vacuum impregnated apple (cv. Granny smith): Calcium and trehalose effects. Journal of Food Engineering, 147, 95-101. doi:10.1016/j.jfoodeng.2014.09.028Betoret, E., Calabuig-Jiménez, L., Patrignani, F., Lanciotti, R., & Dalla Rosa, M. (2017). Effect of high pressure processing and trehalose addition on functional properties of mandarin juice enriched with probiotic microorganisms. LWT - Food Science and Technology, 85, 418-422. doi:10.1016/j.lwt.2016.10.036Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. doi:10.1016/s0023-6438(95)80008-5Burns, P. G., Patrignani, F., Tabanelli, G., Vinderola, G. C., Siroli, L., Reinheimer, J. A., … Lanciotti, R. (2015). Potential of high pressure homogenisation on probiotic Caciotta cheese quality and functionality. Journal of Functional Foods, 13, 126-136. doi:10.1016/j.jff.2014.12.037Chaikham, P. (2015). Stability of probiotics encapsulated with Thai herbal extracts in fruit juices and yoghurt during refrigerated storage. Food Bioscience, 12, 61-66. doi:10.1016/j.fbio.2015.07.006Chen, M., & Mustapha, A. (2012). Survival of freeze-dried microcapsules of α-galactosidase producing probiotics in a soy bar matrix. Food Microbiology, 30(1), 68-73. doi:10.1016/j.fm.2011.10.017Cho, K. M., Lee, J. H., Yun, H. D., Ahn, B. Y., Kim, H., & Seo, W. T. (2011). Changes of phytochemical constituents (isoflavones, flavanols, and phenolic acids) during cheonggukjang soybeans fermentation using potential probiotics Bacillus subtilis CS90. Journal of Food Composition and Analysis, 24(3), 402-410. doi:10.1016/j.jfca.2010.12.015Chung, I.-M., Seo, S.-H., Ahn, J.-K., & Kim, S.-H. (2011). Effect of processing, fermentation, and aging treatment to content and profile of phenolic compounds in soybean seed, soy curd and soy paste. Food Chemistry, 127(3), 960-967. doi:10.1016/j.foodchem.2011.01.065Carmen Collado, M., & Hernández, M. (2007). Identification and differentiation of Lactobacillus, Streptococcus and Bifidobacterium species in fermented milk products with bifidobacteria. Microbiological Research, 162(1), 86-92. doi:10.1016/j.micres.2006.09.007Collado, M. C., Moreno, Y., Hernández, E., Cobo, J. M., & Hernández, M. (2005). Note. In Vitro Viability of Bifidobacterium Strains Isolated from Commercial Dairy Products Exposed to Human Gastrointestinal Conditions. Food Science and Technology International, 11(4), 307-314. doi:10.1177/1082013205056559Corredig, M., Kerr, W., & Wicker, L. (2001). Particle Size Distribution of Orange Juice Cloud after Addition of Sensitized Pectin. Journal of Agricultural and Food Chemistry, 49(5), 2523-2526. doi:10.1021/jf001087aCROWE, J. H., CROWE, L. M., & CHAPMAN, D. (1984). Preservation of Membranes in Anhydrobiotic Organisms: The Role of Trehalose. Science, 223(4637), 701-703. doi:10.1126/science.223.4637.701Dueñas, M., Fernández, D., Hernández, T., Estrella, I., & Muñoz, R. (2004). Bioactive phenolic compounds of cowpeas (Vigna sinensisL). Modifications by fermentation with natural microflora and withLactobacillus plantarumATCC 14917. Journal of the Science of Food and Agriculture, 85(2), 297-304. doi:10.1002/jsfa.1924Fabroni, S., Romeo, F. V., & Rapisarda, P. (2016). Nutritional Composition of Clementine ( Citrus x clementina ) Cultivars. Nutritional Composition of Fruit Cultivars, 149-172. doi:10.1016/b978-0-12-408117-8.00007-6Fito, P., Chiralt, A., Barat, J. M., Andrés, A., Martı́nez-Monzó, J., & Martı́nez-Navarrete, N. (2001). Vacuum impregnation for development of new dehydrated products. Journal of Food Engineering, 49(4), 297-302. doi:10.1016/s0260-8774(00)00226-0Martins, E. M. F., Ramos, A. M., Vanzela, E. S. L., Stringheta, P. C., de Oliveira Pinto, C. L., & Martins, J. M. (2013). Products of vegetable origin: A new alternative for the consumption of probiotic bacteria. Food Research International, 51(2), 764-770. doi:10.1016/j.foodres.2013.01.047García-Hernández, J., Moreno, Y., Chuan, C., & Hernández, M. (2012). In VivoStudy of the Survival ofLactobacillus delbrueckisubsp.bulgaricusCECT 4005T andStreptococcus thermophilusCECT 801 by DVC-FISH after Consumption of Fermented Milk. Journal of Food Science, 77(10), M593-M597. doi:10.1111/j.1750-3841.2012.02918.xGarcía-Hernández, J., Hernández-Pérez, M., Peinado, I., Andrés, A., & Heredia, A. (2018). Tomato-antioxidants enhance viability of L. reuteri under gastrointestinal conditions while the probiotic negatively affects bioaccessibility of lycopene and phenols. Journal of Functional Foods, 43, 1-7. doi:10.1016/j.jff.2017.12.052Hole, A. S., Rud, I., Grimmer, S., Sigl, S., Narvhus, J., & Sahlstrøm, S. (2012). Improved Bioavailability of Dietary Phenolic Acids in Whole Grain Barley and Oat Groat following Fermentation with Probiotic Lactobacillus acidophilus, Lactobacillus johnsonii, and Lactobacillus reuteri. Journal of Agricultural and Food Chemistry, 60(25), 6369-6375. doi:10.1021/jf300410hKaushik, J. K., & Bhat, R. (2003). Why Is Trehalose an Exceptional Protein Stabilizer? Journal of Biological Chemistry, 278(29), 26458-26465. doi:10.1074/jbc.m300815200Umer Khan, S. (2014). Probiotics in dairy foods: a review. Nutrition & Food Science, 44(1), 71-88. doi:10.1108/nfs-04-2013-0051LANCIOTTI, R., PATRIGNANI, F., IUCCI, L., SARACINO, P., & GUERZONI, M. (2007). Potential of high pressure homogenization in the control and enhancement of proteolytic and fermentative activities of some Lactobacillus species. Food Chemistry, 102(2), 542-550. doi:10.1016/j.foodchem.2006.06.043Lin, W.-H., Wu, C.-R., Fang, T. J., Guo, J.-T., Huang, S.-Y., Lee, M.-S., & Yang, H.-L. (2011). Anti-Helicobacter pylori
activity of fermented milk with lactic acid bacteria. Journal of the Science of Food and Agriculture, 91(8), 1424-1431. doi:10.1002/jsfa.4327Luximon-Ramma, A., Bahorun, T., Crozier, A., Zbarsky, V., Datla, K. P., Dexter, D. T., & Aruoma, O. I. (2005). Characterization of the antioxidant functions of flavonoids and proanthocyanidins in Mauritian black teas. Food Research International, 38(4), 357-367. doi:10.1016/j.foodres.2004.10.005Manojlović, V., Nedović, V. A., Kailasapathy, K., & Zuidam, N. J. (2009). Encapsulation of Probiotics for use in Food Products. Encapsulation Technologies for Active Food Ingredients and Food Processing, 269-302. doi:10.1007/978-1-4419-1008-0_10Mansure, J. J. ., Panek, A. D., Crowe, L. M., & Crowe, J. H. (1994). Trehalose inhibits ethanol effects on intact yeast cells and liposomes. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1191(2), 309-316. doi:10.1016/0005-2736(94)90181-3Da Costa Morato Nery, D., da Silva, C. G., Mariani, D., Fernandes, P. N., Pereira, M. D., Panek, A. D., & Eleutherio, E. C. A. (2008). The role of trehalose and its transporter in protection against reactive oxygen species. Biochimica et Biophysica Acta (BBA) - General Subjects, 1780(12), 1408-1411. doi:10.1016/j.bbagen.2008.05.011Ohtake, S., & Wang, Y. J. (2011). Trehalose: Current Use and Future Applications. Journal of Pharmaceutical Sciences, 100(6), 2020-2053. doi:10.1002/jps.22458Oku, K., Kurose, M., Kubota, M., Fukuda, S., Kurimoto, M., Tujisaka, Y., … Sakurai, M. (2005). Combined NMR and Quantum Chemical Studies on the Interaction between Trehalose and Dienes Relevant to the Antioxidant Function of Trehalose. The Journal of Physical Chemistry B, 109(7), 3032-3040. doi:10.1021/jp045906wPatrignani, F., Vannini, L., Kamdem, S. L. S., Lanciotti, R., & Guerzoni, M. E. (2009). Effect of high pressure homogenization on Saccharomyces cerevisiae inactivation and physico-chemical features in apricot and carrot juices. International Journal of Food Microbiology, 136(1), 26-31. doi:10.1016/j.ijfoodmicro.2009.09.021Pirbaglou, M., Katz, J., de Souza, R. J., Stearns, J. C., Motamed, M., & Ritvo, P. (2016). Probiotic supplementation can positively affect anxiety and depressive symptoms: a systematic review of randomized controlled trials. Nutrition Research, 36(9), 889-898. doi:10.1016/j.nutres.2016.06.009Homayouni Rad, A., Torab, R., Mortazavian, A. M., Mehrabany, E. V., & Mehrabany, L. V. (2013). Can probiotics prevent or improve common cold and influenza? Nutrition, 29(5), 805-806. doi:10.1016/j.nut.2012.10.009Ranadheera, R. D. C. S., Baines, S. K., & Adams, M. C. (2010). Importance of food in probiotic efficacy. Food Research International, 43(1), 1-7. doi:10.1016/j.foodres.2009.09.009Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. doi:10.1016/s0891-5849(98)00315-3Rivera-Espinoza, Y., & Gallardo-Navarro, Y. (2010). Non-dairy probiotic products. Food Microbiology, 27(1), 1-11. doi:10.1016/j.fm.2008.06.008Rouxinol-Dias, A. L., Pinto, A. R., Janeiro, C., Rodrigues, D., Moreira, M., Dias, J., & Pereira, P. (2016). Probiotics for the control of obesity – Its effect on weight change. Porto Biomedical Journal, 1(1), 12-24. doi:10.1016/j.pbj.2016.03.005SALVATORI, D., ANDRÉS, A., CHIRALT, A., & FITO, P. (1998). THE RESPONSE OF SOME PROPERTIES OF FRUITS TO VACUUM IMPREGNATION. Journal of Food Process Engineering, 21(1), 59-73. doi:10.1111/j.1745-4530.1998.tb00439.xSanders, M. E. (2008). Probiotics: Definition, Sources, Selection, and Uses. Clinical Infectious Diseases, 46(s2), S58-S61. doi:10.1086/523341Shah, N. P., Ding, W. K., Fallourd, M. J., & Leyer, G. (2010). Improving the Stability of Probiotic Bacteria in Model Fruit Juices Using Vitamins and Antioxidants. Journal of Food Science, no-no. doi:10.1111/j.1750-3841.2010.01628.xTabanelli, G., Burns, P., Patrignani, F., Gardini, F., Lanciotti, R., Reinheimer, J., & Vinderola, G. (2012). Effect of a non-lethal High Pressure Homogenization treatment on the in vivo response of probiotic lactobacilli. Food Microbiology, 32(2), 302-307. doi:10.1016/j.fm.2012.07.004Tabanelli, G., Patrignani, F., Vinderola, G., Reinheimer, J. A., Gardini, F., & Lanciotti, R. (2013). Effect of sub-lethal high pressure homogenization treatments on the in vitro functional and biological properties of lactic acid bacteria. LWT - Food Science and Technology, 53(2), 580-586. doi:10.1016/j.lwt.2013.03.013Wolkers, W. F., Walker, N. J., Tablin, F., & Crowe, J. H. (2001). Human Platelets Loaded with Trehalose Survive Freeze-Drying. Cryobiology, 42(2), 79-87. doi:10.1006/cryo.2001.230
Potential Use of Vacuum Impregnation and High-Pressure Homogenization to Obtain Functional Products from Lulo Fruit (Solanum quitoense Lam.)
[EN] Lulo (Solanum quitoense Lam.) is a Colombian fruit that is mostly used in the preparation of
homemade juice as well as natural remedy for hypertension. The aim of this study was to determine physicochemical and antioxidant properties (antioxidant capacity, total phenols, flavonoids and spermidine content, and polyphenolic compounds profile by liquid chromatography¿mass spectrometry (LC-MS)) of the lulo fruit and its juice. Additionally, vacuum impregnation (VI) properties of the fruit and the effect of high homogenization pressure (50, 100, and 150 MPa) on the juice properties were studied. The results revealed a good availability and impregnation capacity of the pores in fruits with similar maturity index. The main differences observed between the juice and fruit derive from removing
solids and bioactive components in the filtering operation. However, the effect of high-pressure homogenization (HPH) on particle size and bioactive compounds increases the antiradical capacity of the juice and the diversity in polyphenolics when increasing the homogenization pressure.Authors thank the grant provided to Leidy I. Hinestroza by Technological University of Choco-Colombia [Fortalecimiento de los Encadenamientos Productivos de las Subregiones del Choco. BPIN 2013000100284].Hinestroza-Córdoba, LI.; Barrera Puigdollers, C.; Seguí Gil, L.; Betoret Valls, N. (2021). Potential Use of Vacuum Impregnation and High-Pressure
Homogenization to Obtain Functional Products from Lulo Fruit
(Solanum quitoense Lam.). Foods. 10(4):1-16. https://doi.org/10.3390/foods10040817S11610
Effect of drying process, encapsulation, and storage on the survival rates and gastrointestinal resistance of L. Salivarius spp. salivarius included into a fruit matrix
[EN] In a new probiotic food, besides adequate physicochemical properties, it is necessary to ensure a minimum probiotic content after processing, storage, and throughout gastrointestinal (GI) digestion. The aim of this work was to study the effect of hot air drying/freeze drying processes, encapsulation, and storage on the probiotic survival and in vitro digestion resistance of Lactobacillus salivarius spp. salivarius included into an apple matrix. The physicochemical properties of the food products developed were also evaluated. Although freeze drying processing provided samples with better texture and color, the probiotic content and its resistance to gastrointestinal digestion and storage were higher in hot air dried samples. Non-encapsulated microorganisms in hot air dried apples showed a 79.7% of survival rate versus 40% of the other samples after 28 days of storage. The resistance of encapsulated microorganisms to in vitro digestion was significantly higher (p <= 0.05) in hot air dried samples, showing survival rates of 50-89% at the last stage of digestion depending on storage time. In freeze dried samples, encapsulated microorganisms showed a survival rate of 16-47% at the end of digestion. The different characteristics of the food matrix after both processes had a significant effect on the probiotic survival after the GI digestion. Documented physiological and molecular mechanisms involved in the stress response of probiotic cells would explain these results.Authors thank the postdoctoral grant Juan de la Cierva Incorporacion (IJCI-2016-29679).Betoret, E.; Betoret Valls, N.; Calabuig-Jiménez, L.; Barrera Puigdollers, C.; Dalla Rosa, M. (2020). Effect of drying process, encapsulation, and storage on the survival rates and gastrointestinal resistance of L. Salivarius spp. salivarius included into a fruit matrix. Microorganisms. 8(5):1-12. https://doi.org/10.3390/microorganisms8050654S11285Brahma, S., Sadiq, M. B., & Ahmad, I. (2019). Probiotics in Functional Foods. Reference Module in Food Science. doi:10.1016/b978-0-08-100596-5.22368-8Probiotics in Food-Health and Nutritional Properties and Guidelines for Evaluationhttp://www.fao.org/3/a-a0512e.pdfBatista, A. L. D., Silva, R., Cappato, L. P., Almada, C. N., Garcia, R. K. A., Silva, M. C., … Cruz, A. G. (2015). Quality parameters of probiotic yogurt added to glucose oxidase compared to commercial products through microbiological, physical–chemical and metabolic activity analyses. Food Research International, 77, 627-635. doi:10.1016/j.foodres.2015.08.017Martinez, R. C. R., Aynaou, A.-E., Albrecht, S., Schols, H. A., De Martinis, E. C. P., Zoetendal, E. G., … Smidt, H. (2011). In vitro evaluation of gastrointestinal survival of Lactobacillus amylovorus DSM 16698 alone and combined with galactooligosaccharides, milk and/or Bifidobacterium animalis subsp. lactis Bb-12. International Journal of Food Microbiology, 149(2), 152-158. doi:10.1016/j.ijfoodmicro.2011.06.010Ester, B., Noelia, B., Laura, C.-J., Francesca, P., Cristina, B., Rosalba, L., & Marco, D. R. (2019). Probiotic survival and in vitro digestion of L. salivarius spp. salivarius encapsulated by high homogenization pressures and incorporated into a fruit matrix. LWT, 111, 883-888. doi:10.1016/j.lwt.2019.05.088Burgain, J., Gaiani, C., Linder, M., & Scher, J. (2011). Encapsulation of probiotic living cells: From laboratory scale to industrial applications. Journal of Food Engineering, 104(4), 467-483. doi:10.1016/j.jfoodeng.2010.12.031Capela, P., Hay, T. K. C., & Shah, N. P. (2006). Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt. Food Research International, 39(2), 203-211. doi:10.1016/j.foodres.2005.07.007Betoret, E., Betoret, N., Arilla, A., Bennár, M., Barrera, C., Codoñer, P., & Fito, P. (2012). No invasive methodology to produce a probiotic low humid apple snack with potential effect against Helicobacter pylori. Journal of Food Engineering, 110(2), 289-293. doi:10.1016/j.jfoodeng.2011.04.027Patrignani, F., Siroli, L., Serrazanetti, D. I., Braschi, G., Betoret, E., Reinheimer, J. A., & Lanciotti, R. (2017). Microencapsulation of functional strains by high pressure homogenization for a potential use in fermented milk. Food Research International, 97, 250-257. doi:10.1016/j.foodres.2017.04.020Betoret, E., Betoret, N., Rocculi, P., & Dalla Rosa, M. (2015). Strategies to improve food functionality: Structure–property relationships on high pressures homogenization, vacuum impregnation and drying technologies. Trends in Food Science & Technology, 46(1), 1-12. doi:10.1016/j.tifs.2015.07.006Betoret, E., Sentandreu, E., Betoret, N., & Fito, P. (2012). Homogenization pressures applied to citrus juice manufacturing. Functional properties and application. Journal of Food Engineering, 111(1), 28-33. doi:10.1016/j.jfoodeng.2012.01.035Aiba, Y., Suzuki, N., Kabir, A. M. A., Takagi, A., & Koga, Y. (1998). Lactic acid-mediated suppression of Helicobacter pylori by the oral administration of Lactobacillus salivarius as a probiotic in a gnotobiotic murine model. American Journal of Gastroenterology, 93(11), 2097-2101. doi:10.1111/j.1572-0241.1998.00600.xDing, W. K., & Shah, N. P. (2009). Effect of Homogenization Techniques on Reducing the Size of Microcapsules and the Survival of Probiotic Bacteria Therein. Journal of Food Science, 74(6), M231-M236. doi:10.1111/j.1750-3841.2009.01195.xCalabuig-Jiménez, L., Betoret, E., Betoret, N., Patrignani, F., Barrera, C., Seguí, L., … Dalla Rosa, M. (2019). High pressures homogenization (HPH) to microencapsulate L. salivarius spp. salivarius in mandarin juice. Probiotic survival and in vitro digestion. Journal of Food Engineering, 240, 43-48. doi:10.1016/j.jfoodeng.2018.07.012Maskan, M. (2001). Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48(2), 177-182. doi:10.1016/s0260-8774(00)00155-2Lewicki, P. P., & Jakubczyk, E. (2004). Effect of hot air temperature on mechanical properties of dried apples. Journal of Food Engineering, 64(3), 307-314. doi:10.1016/j.jfoodeng.2003.10.014Chiralt, A., Martı́nez-Navarrete, N., Martı́nez-Monzó, J., Talens, P., Moraga, G., Ayala, A., & Fito, P. (2001). Changes in mechanical properties throughout osmotic processes. Journal of Food Engineering, 49(2-3), 129-135. doi:10.1016/s0260-8774(00)00203-xContreras, C., Martín, M. E., Martínez-Navarrete, N., & Chiralt, A. (2005). Effect of vacuum impregnation and microwave application on structural changes which occurred during air-drying of apple. LWT - Food Science and Technology, 38(5), 471-477. doi:10.1016/j.lwt.2004.07.017Santos, M. G., Carpinteiro, D. A., Thomazini, M., Rocha-Selmi, G. A., da Cruz, A. G., Rodrigues, C. E. C., & Favaro-Trindade, C. S. (2014). Coencapsulation of xylitol and menthol by double emulsion followed by complex coacervation and microcapsule application in chewing gum. Food Research International, 66, 454-462. doi:10.1016/j.foodres.2014.10.010Qaziyani, S. D., Pourfarzad, A., Gheibi, S., & Nasiraie, L. R. (2019). Effect of encapsulation and wall material on the probiotic survival and physicochemical properties of synbiotic chewing gum: study with univariate and multivariate analyses. Heliyon, 5(7), e02144. doi:10.1016/j.heliyon.2019.e02144Alonso García, E., Pérez Montoro, B., Benomar, N., Castillo-Gutiérrez, S., Estudillo-Martínez, M. D., Knapp, C. W., & Abriouel, H. (2019). New insights into the molecular effects and probiotic properties of Lactobacillus pentosus pre-adapted to edible oils. LWT, 109, 153-162. doi:10.1016/j.lwt.2019.04.028Zhang, Y., Lin, J., & Zhong, Q. (2016). Effects of media, heat adaptation, and outlet temperature on the survival of Lactobacillus salivarius NRRL B-30514 after spray drying and subsequent storage. LWT, 74, 441-447. doi:10.1016/j.lwt.2016.08.008Dianawati, D., & Shah, N. P. (2011). Enzyme Stability of Microencapsulated Bifidobacterium animalis ssp. lactis Bb12 after Freeze Drying and during Storage in Low Water Activity at Room Temperature. Journal of Food Science, 76(6), M463-M471. doi:10.1111/j.1750-3841.2011.02246.xAnal, A. K., & Singh, H. (2007). Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends in Food Science & Technology, 18(5), 240-251. doi:10.1016/j.tifs.2007.01.004Soares, M. B., Martinez, R. C. R., Pereira, E. P. R., Balthazar, C. F., Cruz, A. G., Ranadheera, C. S., & Sant’Ana, A. S. (2019). The resistance of Bacillus, Bifidobacterium, and Lactobacillus strains with claimed probiotic properties in different food matrices exposed to simulated gastrointestinal tract conditions. Food Research International, 125, 108542. doi:10.1016/j.foodres.2019.108542Ribeiro, M. C. E., Chaves, K. S., Gebara, C., Infante, F. N. S., Grosso, C. R. F., & Gigante, M. L. (2014). Effect of microencapsulation of Lactobacillus acidophilus LA-5 on physicochemical, sensory and microbiological characteristics of stirred probiotic yoghurt. Food Research International, 66, 424-431. doi:10.1016/j.foodres.2014.10.019Yonekura, L., Sun, H., Soukoulis, C., & Fisk, I. (2014). Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fibre by spray drying: Technological characterization, storage stability and survival after in vitro digestion. Journal of Functional Foods, 6, 205-214. doi:10.1016/j.jff.2013.10.008Valerio, F., De Bellis, P., Lonigro, S. L., Morelli, L., Visconti, A., & Lavermicocca, P. (2006). In Vitro and In Vivo Survival and Transit Tolerance of Potentially Probiotic Strains Carried by Artichokes in the Gastrointestinal Tract. Applied and Environmental Microbiology, 72(4), 3042-3045. doi:10.1128/aem.72.4.3042-3045.200
Fermentation of Lulo Juice with Lactobacillus reuteri CECT 925. Properties and Effect of High Homogenization Pressures on Resistance to In Vitro Gastrointestinal Digestion
[EN] The aim of this study was to evaluate the use of lulo juice as substrate for producing a potentially probiotic beverage with Lactobacillus reuteri CECT 925. Lulo juices at two pH levels and two levels of HPH treatment have been considered to evaluate the effect of these variables on Lactobacillus reuteri CECT 925 growth, physicochemical and antioxidant properties, and the resistance of microbial cells to gastrointestinal digestion in vitro. Regarding the growth of Lactobacillus reuteri CECT 925, it was mainly affected by the pH of the medium, the rectified juice at pH 5.5 being the most appropriated one. The growth of Lactobacillus reuteri CECT 925 mainly increased the antiradical capacity of the juices. In general, Lactobacillus reuteri CECT 925 showed good resistance to in vitro gastrointestinal digestion conditions, reaching levels above 10(7) CFU/mL in all cases. The highest resistance was observed in the juice treated at 150 MPa followed by the juice homogenized at 100 MPa.Authors thank the grant provided to Leidy I. Hinestroza by Technological University of Chocó-Colombia [Fortalecimiento de los Encadenamientos Productivos de las Subregiones
del Chocó. BPIN 2013000100284].Hinestroza-Córdoba, LI.; Betoret, E.; Seguí Gil, L.; Barrera Puigdollers, C.; Betoret Valls, N. (2021). Fermentation of Lulo Juice with Lactobacillus reuteri CECT 925. Properties and Effect of High Homogenization Pressures on Resistance to In Vitro Gastrointestinal Digestion. Applied Sciences. 11(22):1-15. https://doi.org/10.3390/app112210909S115112
Antioxidants Bioaccessibility and Lactobacillus salivarius (CECT 4063) Survival Following the In Vitro Digestion of Vacuum Impregnated Apple Slices: Effect of the Drying Technique, the Addition of Trehalose, and High-Pressure Homogenization
[EN] To benefit the health of consumers, bioactive compounds must reach an adequate concentration at the end of the digestive process. This involves both an effective release from the food matrix where they are contained and a high resistance to exposure to gastrointestinal conditions. Accordingly, this study evaluates the impact of trehalose addition (10% w/w) and homogenization (100 MPa), together with the structural changes induced in vacuum impregnated apple slices (VI) by air-drying (AD) and freeze-drying (FD), on Lactobacillus salivarius spp. salivarius (CECT 4063) survival and the bioaccessibility of antioxidants during in vitro digestion. Vacuum impregnated apple slices conferred maximum protection to the lactobacillus strain during its passage through the gastrointestinal tract, whereas drying with air reduced the final content of the living cells to values below 10 cfu/g. The bioaccessibility of antioxidants also reached the highest values in the VI samples, in which the release of both the total phenols and total flavonoids to the liquid phase increased with in vitro digestion. The addition of trehalose and homogenization at 100 MPa increased the total bioaccessibility of antioxidants in FD and AD apples and the total bioaccessibility of flavonoids in the VI samples. Homogenizing at 100 MPa also increased the survival of L. salivarius during in vitro digestion in FD samples.This research was funded by Generalitat Valenciana, project reference GV/2015/066
entitled Mejora de la calidad funcional de un snack con efecto probiótico y antioxidante mediante la
incorporación de trehalosa y la aplicación de altas presiones de homogeneización.Burca-Busaga, CG.; Betoret Valls, N.; Seguí Gil, L.; García Hernández, J.; Hernández Pérez, M.; Barrera Puigdollers, C. (2021). Antioxidants Bioaccessibility and Lactobacillus salivarius (CECT 4063) Survival Following the In Vitro Digestion of Vacuum Impregnated Apple Slices: Effect of the Drying Technique, the Addition of Trehalose, and High-Pressure Homogenization. Foods. 10(9):1-15. https://doi.org/10.3390/foods10092155S11510
Characterization of Powdered Lulo (Solanum quitoense) Bagasse as a Functional Food Ingredient
[EN] The stabilization of fruit bagasse by drying and milling technology is a valuable processing technology to improve its durability and preserve its valuable biologically active components. The objective of this study was to evaluate the effect of lyophilization and air temperature (60 degrees C and 70 degrees C) in hot air-drying as well as grinding conditions (coarse or fine granulometry) on physico-chemical properties; water interaction capacity; antioxidant properties; and carotenoid content of powdered lulo bagasse. Air-drying kinetics at 60 degrees C and 70 degrees C and sorption isotherms at 20 degrees C were also determined. Results showed that drying conditions influence antioxidant properties and carotenoid content while granulometry slightly influenced fiber and water interaction properties. Fiber content was near 50% and carotenoid content was higher than 60 mu g/g dry matter in lyophilized powder. This beta-carotene content is comparable to that provided by carrot juice. Air-drying at 60 degrees C only reduced carotenoids content by 10%.This research and APC were funded by Generalitat Valenciana, Project AICO/2017/'049.Hinestroza-Córdoba, LI.; Duarte-Serna, S.; Seguí Gil, L.; Barrera Puigdollers, C.; Betoret Valls, N. (2020). Characterization of Powdered Lulo (Solanum quitoense) Bagasse as a Functional Food Ingredient. Foods. 9(6):1-16. https://doi.org/10.3390/foods9060723S11696Forero, D. P., Orrego, C. E., Peterson, D. G., & Osorio, C. (2015). Chemical and sensory comparison of fresh and dried lulo (Solanum quitoense Lam.) fruit aroma. Food Chemistry, 169, 85-91. doi:10.1016/j.foodchem.2014.07.111Gancel, A.-L., Alter, P., Dhuique-Mayer, C., Ruales, J., & Vaillant, F. (2008). Identifying Carotenoids and Phenolic Compounds In Naranjilla (Solanum quitoense Lam. Var. Puyo Hybrid), an Andean Fruit. Journal of Agricultural and Food Chemistry, 56(24), 11890-11899. doi:10.1021/jf801515pForero, D. P., Masatani, C., Fujimoto, Y., Coy-Barrera, E., Peterson, D. G., & Osorio, C. (2016). Spermidine Derivatives in Lulo (Solanum quitoense Lam.) Fruit: Sensory (Taste) versus Biofunctional (ACE-Inhibition) Properties. Journal of Agricultural and Food Chemistry, 64(26), 5375-5383. doi:10.1021/acs.jafc.6b01631De Moraes Crizel, T., Jablonski, A., de Oliveira Rios, A., Rech, R., & Flôres, S. H. (2013). Dietary fiber from orange byproducts as a potential fat replacer. LWT - Food Science and Technology, 53(1), 9-14. doi:10.1016/j.lwt.2013.02.002Karam, M. C., Petit, J., Zimmer, D., Baudelaire Djantou, E., & Scher, J. (2016). Effects of drying and grinding in production of fruit and vegetable powders: A review. Journal of Food Engineering, 188, 32-49. doi:10.1016/j.jfoodeng.2016.05.001Majerska, J., Michalska, A., & Figiel, A. (2019). A review of new directions in managing fruit and vegetable processing by-products. Trends in Food Science & Technology, 88, 207-219. doi:10.1016/j.tifs.2019.03.021Mimouni, A., Deeth, H. C., Whittaker, A. K., Gidley, M. J., & Bhandari, B. R. (2009). Rehydration process of milk protein concentrate powder monitored by static light scattering. Food Hydrocolloids, 23(7), 1958-1965. doi:10.1016/j.foodhyd.2009.01.010Cai, Y. Z., & Corke, H. (2000). Production and Properties of Spray-dried Amaranthus Betacyanin Pigments. Journal of Food Science, 65(7), 1248-1252. doi:10.1111/j.1365-2621.2000.tb10273.xFreudig, B., Hogekamp, S., & Schubert, H. (1999). Dispersion of powders in liquids in a stirred vessel. Chemical Engineering and Processing: Process Intensification, 38(4-6), 525-532. doi:10.1016/s0255-2701(99)00049-5Raghavendra, S. N., Rastogi, N. K., Raghavarao, K. S. M. S., & Tharanathan, R. N. (2004). Dietary fiber from coconut residue: effects of different treatments and particle size on the hydration properties. European Food Research and Technology, 218(6), 563-567. doi:10.1007/s00217-004-0889-2Robertson, J. A., de Monredon, F. D., Dysseler, P., Guillon, F., Amado, R., & Thibault, J.-F. (2000). Hydration Properties of Dietary Fibre and Resistant Starch: a European Collaborative Study. LWT - Food Science and Technology, 33(2), 72-79. doi:10.1006/fstl.1999.0595Garau, M. C., Simal, S., Rosselló, C., & Femenia, A. (2007). Effect of air-drying temperature on physico-chemical properties of dietary fibre and antioxidant capacity of orange (Citrus aurantium v. Canoneta) by-products. Food Chemistry, 104(3), 1014-1024. doi:10.1016/j.foodchem.2007.01.009Yasumatsu, K., Sawada, K., Moritaka, S., Misaki, M., Toda, J., Wada, T., & Ishii, K. (1972). Whipping and Emulsifying Properties of Soybean Products. Agricultural and Biological Chemistry, 36(5), 719-727. doi:10.1080/00021369.1972.10860321Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 152-178. doi:10.1016/s0076-6879(99)99017-1Wolfe, K., Wu, X., & Liu, R. H. (2003). Antioxidant Activity of Apple Peels. Journal of Agricultural and Food Chemistry, 51(3), 609-614. doi:10.1021/jf020782aLuximon-Ramma, A., Bahorun, T., Crozier, A., Zbarsky, V., Datla, K. P., Dexter, D. T., & Aruoma, O. I. (2005). Characterization of the antioxidant functions of flavonoids and proanthocyanidins in Mauritian black teas. Food Research International, 38(4), 357-367. doi:10.1016/j.foodres.2004.10.005Kuskoski, E. M., Asuero, A. G., Troncoso, A. M., Mancini-Filho, J., & Fett, R. (2005). Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Ciência e Tecnologia de Alimentos, 25(4), 726-732. doi:10.1590/s0101-20612005000400016Stratil, P., Klejdus, B., & Kubáň, V. (2006). Determination of Total Content of Phenolic Compounds and Their Antioxidant Activity in VegetablesEvaluation of Spectrophotometric Methods. Journal of Agricultural and Food Chemistry, 54(3), 607-616. doi:10.1021/jf052334jRe, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. doi:10.1016/s0891-5849(98)00315-3Rodrigues, E., Mariutti, L. R. B., & Mercadante, A. Z. (2013). Carotenoids and Phenolic Compounds from Solanum sessiliflorum, an Unexploited Amazonian Fruit, and Their Scavenging Capacities against Reactive Oxygen and Nitrogen Species. Journal of Agricultural and Food Chemistry, 61(12), 3022-3029. doi:10.1021/jf3054214Bunea, A., Andjelkovic, M., Socaciu, C., Bobis, O., Neacsu, M., Verhé, R., & Camp, J. V. (2008). Total and individual carotenoids and phenolic acids content in fresh, refrigerated and processed spinach (Spinacia oleracea L.). Food Chemistry, 108(2), 649-656. doi:10.1016/j.foodchem.2007.11.056Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On a Theory of the van der Waals Adsorption of Gases. Journal of the American Chemical Society, 62(7), 1723-1732. doi:10.1021/ja01864a025Martínez-Las Heras, R., Heredia, A., Castelló, M. L., & Andrés, A. (2014). Moisture sorption isotherms and isosteric heat of sorption of dry persimmon leaves. Food Bioscience, 7, 88-94. doi:10.1016/j.fbio.2014.06.002Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2), 309-319. doi:10.1021/ja01269a023Vesterlund, S., Salminen, K., & Salminen, S. (2012). Water activity in dry foods containing live probiotic bacteria should be carefully considered: A case study with Lactobacillus rhamnosus GG in flaxseed. International Journal of Food Microbiology, 157(2), 319-321. doi:10.1016/j.ijfoodmicro.2012.05.016Viuda-Martos, M., Ruiz-Navajas, Y., Martin-Sánchez, A., Sánchez-Zapata, E., Fernández-López, J., Sendra, E., … Pérez-Álvarez, J. A. (2012). Chemical, physico-chemical and functional properties of pomegranate (Punica granatum L.) bagasses powder co-product. Journal of Food Engineering, 110(2), 220-224. doi:10.1016/j.jfoodeng.2011.05.029Llobera, A., & Cañellas, J. (2007). Dietary fibre content and antioxidant activity of Manto Negro red grape (Vitis vinifera): pomace and stem. Food Chemistry, 101(2), 659-666. doi:10.1016/j.foodchem.2006.02.025Sudha, M. L., Baskaran, V., & Leelavathi, K. (2007). Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food Chemistry, 104(2), 686-692. doi:10.1016/j.foodchem.2006.12.016Happi Emaga, T., Robert, C., Ronkart, S. N., Wathelet, B., & Paquot, M. (2008). Dietary fibre components and pectin chemical features of peels during ripening in banana and plantain varieties. Bioresource Technology, 99(10), 4346-4354. doi:10.1016/j.biortech.2007.08.030Figuerola, F., Hurtado, M. L., Estévez, A. M., Chiffelle, I., & Asenjo, F. (2005). Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chemistry, 91(3), 395-401. doi:10.1016/j.foodchem.2004.04.036Amaya-Cruz, D. M., Rodríguez-González, S., Pérez-Ramírez, I. F., Loarca-Piña, G., Amaya-Llano, S., Gallegos-Corona, M. A., & Reynoso-Camacho, R. (2015). Juice by-products as a source of dietary fibre and antioxidants and their effect on hepatic steatosis. Journal of Functional Foods, 17, 93-102. doi:10.1016/j.jff.2015.04.051Larrauri, J. . (1999). New approaches in the preparation of high dietary fibre powders from fruit by-products. Trends in Food Science & Technology, 10(1), 3-8. doi:10.1016/s0924-2244(99)00016-3(2010). Scientific Opinion on Dietary Reference Values for carbohydrates and dietary fibre. EFSA Journal, 8(3). doi:10.2903/j.efsa.2010.1462Viuda-Martos, M., López-Marcos, M. C., Fernández-López, J., Sendra, E., López-Vargas, J. H., & Pérez-Álvarez, J. A. (2010). Role of Fiber in Cardiovascular Diseases: A Review. Comprehensive Reviews in Food Science and Food Safety, 9(2), 240-258. doi:10.1111/j.1541-4337.2009.00102.xLucas-González, R., Viuda-Martos, M., Pérez-Álvarez, J. Á., & Fernández-López, J. (2017). Evaluation of Particle Size Influence on Proximate Composition, Physicochemical, Techno-Functional and Physio-Functional Properties of Flours Obtained from Persimmon (Diospyros kaki Trumb.) Coproducts. Plant Foods for Human Nutrition, 72(1), 67-73. doi:10.1007/s11130-016-0592-zPark, H.-J., Lee, Y., & Eun, J.-B. (2016). Physicochemical characteristics of kimchi powder manufactured by hot air drying and freeze drying. Biocatalysis and Agricultural Biotechnology, 5, 193-198. doi:10.1016/j.bcab.2016.02.002Sousa, A. S. de, Borges, S. V., Magalhães, N. F., Ricardo, H. V., & Azevedo, A. D. (2008). Spray-dried tomato powder: reconstitution properties and colour. Brazilian Archives of Biology and Technology, 51(4), 607-614. doi:10.1590/s1516-89132008000400019Bakar, J., Ee, S. C., Muhammad, K., Hashim, D. M., & Adzahan, N. (2012). Spray-Drying Optimization for Red Pitaya Peel (Hylocereus polyrhizus). Food and Bioprocess Technology, 6(5), 1332-1342. doi:10.1007/s11947-012-0842-5Bhusari, S. N., Muzaffar, K., & Kumar, P. (2014). Effect of carrier agents on physical and microstructural properties of spray dried tamarind pulp powder. Powder Technology, 266, 354-364. doi:10.1016/j.powtec.2014.06.038Ahmed, A. M., Ishida, Y., & Shimamoto, T. (2009). Molecular characterization of antimicrobial resistance inSalmonellaisolated from animals in Japan. Journal of Applied Microbiology, 106(2), 402-409. doi:10.1111/j.1365-2672.2008.04009.xLecumberri, E., Mateos, R., Izquierdo-Pulido, M., Rupérez, P., Goya, L., & Bravo, L. (2007). Dietary fibre composition, antioxidant capacity and physico-chemical properties of a fibre-rich product from cocoa (Theobroma cacao L.). Food Chemistry, 104(3), 948-954. doi:10.1016/j.foodchem.2006.12.054Serna-Cock, L., Torres-León, C., & Ayala-Aponte, A. (2015). Evaluación de Polvos Alimentarios obtenidos de Cáscaras de Mango (Mangifera indica) como fuente de Ingredientes Funcionales. Información tecnológica, 26(2), 41-50. doi:10.4067/s0718-07642015000200006Karnik, D., & Wicker, L. (2018). Emulsion stability of sugar beet pectin fractions obtained by isopropanol fractionation. Food Hydrocolloids, 74, 249-254. doi:10.1016/j.foodhyd.2017.07.041Martínez-Las Heras, R., Landines, E. F., Heredia, A., Castelló, M. L., & Andrés, A. (2017). Influence of drying process and particle size of persimmon fibre on its physicochemical, antioxidant, hydration and emulsifying properties. Journal of Food Science and Technology, 54(9), 2902-2912. doi:10.1007/s13197-017-2728-zMphahlele, R. R., Fawole, O. A., Makunga, N. P., & Opara, U. L. (2016). Effect of drying on the bioactive compounds, antioxidant, antibacterial and antityrosinase activities of pomegranate peel. BMC Complementary and Alternative Medicine, 16(1). doi:10.1186/s12906-016-1132-yCrozier, S. J., Preston, A. G., Hurst, J. W., Payne, M. J., Mann, J., Hainly, L., & Miller, D. L. (2011). Cacao seeds are a «Super Fruit»: A comparative analysis of various fruit powders and products. Chemistry Central Journal, 5(1). doi:10.1186/1752-153x-5-5Michalska, A., Wojdyło, A., Lech, K., Łysiak, G. P., & Figiel, A. (2017). Effect of different drying techniques on physical properties, total polyphenols and antioxidant capacity of blackcurrant pomace powders. LWT, 78, 114-121. doi:10.1016/j.lwt.2016.12.008Dorta, E., Lobo, M. G., & Gonzalez, M. (2011). Reutilization of Mango Byproducts: Study of the Effect of Extraction Solvent and Temperature on Their Antioxidant Properties. Journal of Food Science, 77(1), C80-C88. doi:10.1111/j.1750-3841.2011.02477.xRana, S., Gupta, S., Rana, A., & Bhushan, S. (2015). Functional properties, phenolic constituents and antioxidant potential of industrial apple pomace for utilization as active food ingredient. Food Science and Human Wellness, 4(4), 180-187. doi:10.1016/j.fshw.2015.10.001Ozgen, M., Reese, R. N., Tulio, A. Z., Scheerens, J. C., & Miller, A. R. (2006). Modified 2,2-Azino-bis-3-ethylbenzothiazoline-6-sulfonic Acid (ABTS) Method to Measure Antioxidant Capacity of Selected Small Fruits and Comparison to Ferric Reducing Antioxidant Power (FRAP) and 2,2‘-Diphenyl-1-picrylhydrazyl (DPPH) Methods. Journal of Agricultural and Food Chemistry, 54(4), 1151-1157. doi:10.1021/jf051960dDel Caro, A., Piga, A., Vacca, V., & Agabbio, M. (2004). Changes of flavonoids, vitamin C and antioxidant capacity in minimally processed citrus segments and juices during storage. Food Chemistry, 84(1), 99-105. doi:10.1016/s0308-8146(03)00180-8Silva, L. M. R. da, Figueiredo, E. A. T. de, Ricardo, N. M. P. S., Vieira, I. G. P., Figueiredo, R. W. de, Brasil, I. M., & Gomes, C. L. (2014). Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chemistry, 143, 398-404. doi:10.1016/j.foodchem.2013.08.001Albanese, D., Adiletta, G., D′Acunto, M., Cinquanta, L., & Di Matteo, M. (2014). Tomato peel drying and carotenoids stability of the extracts. International Journal of Food Science & Technology, 49(11), 2458-2463. doi:10.1111/ijfs.12602Bub, A., Watzl, B., Abrahamse, L., Delincée, H., Adam, S., Wever, J., … Rechkemmer, G. (2000). Moderate Intervention with Carotenoid-Rich Vegetable Products Reduces Lipid Peroxidation in Men. The Journal of Nutrition, 130(9), 2200-2206. doi:10.1093/jn/130.9.220