17 research outputs found

    The relationship between size and longevity of the malaria vector Anopheles gambiae (s.s.) depends on the larval environment

    Get PDF
    Abstract Background Understanding the variation in vector-borne disease transmission intensity across time and space relies on a thorough understanding of the impact of environmental factors on vectorial capacity traits of mosquito populations. This is driven primarily by variation in larval development and growth, with carryover effects influencing adult traits such as longevity and adult body size. The relationship between body size and longevity strongly affects the evolution of life histories and the epidemiology of vector-borne diseases. This relationship ranges from positive to negative but the reasons for this variability are not clear. Both traits depend on a number of environmental factors, but primarily on temperature as well as availability of nutritional resources. We therefore asked how the larval environment of the mosquito Anopheles gambiae Giles (sensu stricto) (Diptera: Culicidae) affects the relationship between body size and longevity. Methods We reared the larvae of An. gambiae individually at three temperatures (21, 25 and 29 °C) and two food levels (the standard and 50% of our laboratory diet) and measured adult size and longevity. We estimated the direct and indirect (via adult size) effects of food and temperature on longevity with a piecewise structural equation model (SEM). Results We confirmed the direct effects of food and temperature during larval development on body size, as wing length decreased with increasing temperature and decreasing food levels. While the overall relationship between size and longevity was weak, we measured striking differences among environments. At 25 °C there was no clear relationship between size and longevity; at 29 °C the association was negative with standard food but positive with low food; whereas at 21 °C it was positive with standard food but negative with low food. Conclusions The larval environment influences the adult’s fitness in complex ways with larger mosquitoes living longer in some environments but not in others. This confirmed our hypothesis that the relationship between size and longevity is not limited to a positive correlation. A better understanding of this relationship and its mechanisms may improve the modelling of the transmission of vector borne diseases, the evolution of life history traits, and the influence of vector control

    Incorporating effects of age on energy dynamics predicts nonlinear maternal allocation patterns in iteroparous animals

    Get PDF
    Iteroparous parents face a trade-off between allocating current resources to reproduction versus maximizing survival to produce further offspring. Parental allocation varies across age and follows a hump-shaped pattern across diverse taxa, including mammals, birds and invertebrates. This nonlinear allocation pattern lacks a general theoretical explanation, potentially because most studies focus on offspring number rather than quality and do not incorporate uncertainty or age-dependence in energy intake or costs. Here, we develop a life-history model of maternal allocation in iteroparous animals. We identify the optimal allocation strategy in response to stochasticity when energetic costs, feeding success, energy intake and environmentally driven mortality risk are age-dependent. As a case study, we use tsetse, a viviparous insect that produces one offspring per reproductive attempt and relies on an uncertain food supply of vertebrate blood. Diverse scenarios generate a hump-shaped allocation when energetic costs and energy intake increase with age and also when energy intake decreases and energetic costs increase or decrease. Feeding success and environmentally driven mortality risk have little influence on age-dependence in allocation. We conclude that ubiquitous evidence for age-dependence in these influential traits can explain the prevalence of nonlinear maternal allocation across diverse taxonomic groups

    Incorporating effects of age on energy dynamics predicts nonlinear maternal allocation patterns in iteroparous animals

    Get PDF
    Iteroparous parents face a trade-off between allocating current resources to reproduction versus maximizing survival to produce further offspring. Parental allocation varies across age and follows a hump-shaped pattern across diverse taxa, including mammals, birds and invertebrates. This nonlinear allocation pattern lacks a general theoretical explanation, potentially because most studies focus on offspring number rather than quality and do not incorporate uncertainty or age-dependence in energy intake or costs. Here, we develop a life-history model of maternal allocation in iteroparous animals. We identify the optimal allocation strategy in response to stochasticity when energetic costs, feeding success, energy intake and environmentally driven mortality risk are age-dependent. As a case study, we use tsetse, a viviparous insect that produces one offspring per reproductive attempt and relies on an uncertain food supply of vertebrate blood. Diverse scenarios generate a hump-shaped allocation when energetic costs and energy intake increase with age and also when energy intake decreases and energetic costs increase or decrease. Feeding success and environmentally driven mortality risk have little influence on age-dependence in allocation. We conclude that ubiquitous evidence for age-dependence in these influential traits can explain the prevalence of nonlinear maternal allocation across diverse taxonomic groups

    Big baby, little mother:tsetse flies are exceptions to the juvenile small size principle

    Get PDF
    While across the animal kingdom offspring are born smaller than their parents, notable exceptions exist. Several dipteran species belonging to the Hippoboscoidea superfamily can produce offspring larger than themselves. In this essay, the blood‐feeding tsetse is focused on. It is suggested that the extreme reproductive strategy of this fly is enabled by feeding solely on highly nutritious blood, and producing larval offspring that are soft and malleable. This immense reproductive expenditure may have evolved to avoid competition with other biting flies. Tsetse also transmit blood‐borne parasites that cause the fatal diseases called African trypanosomiases. It is discussed how tsetse life history and reproductive strategy profoundly influence the type of vector control interventions used to reduce fly populations. In closing, it is argued that the unusual life history of tsetse warrants their preservation in the areas where human and animal health is not threatened

    Effects of maternal age and stress on offspring quality in a viviparous fly

    Get PDF
    Many organisms show signs of deterioration with age in terms of survival and reproduction. We tested whether intraspecific variation in such senescence patterns can be driven by resource availability or reproductive history. We did this by manipulating nutritional stress and age at first reproduction and measuring age-dependent reproductive output in tsetse (Glossina morsitans morsitans), a viviparous fly with high maternal allocation. Across all treatments, offspring weight followed a bell-shaped curve with maternal age. Nutritionally stressed females had a higher probability of abortion and produced offspring with lower starvation tolerance. There was no evidence of an increased rate of reproductive senescence in nutritionally stressed females, or a reduced rate due to delayed mating, as measured by patterns of abortion, offspring weight or offspring starvation tolerance. Therefore, although we found evidence of reproductive senescence in tsetse, our results did not indicate that resource allocation trade-offs or costs of reproduction increase the rate of senescence

    Investigating the unaccounted ones: insights on age-dependent reproductive loss in a viviparous fly

    Get PDF
    Most empirical and theoretical studies on reproductive senescence focus on observable attributes of offspring produced, such as size or postnatal survival. While harder to study, an important outcome of reproduction for a breeding individual is whether a viable offspring is produced at all. While prenatal mortality can sometimes be directly observed, this can also be indicated through an increase in the interval between offspring production. Both direct reproductive loss and presumed losses have been found to increase in older females across several species. Here, we study such reproductive loss (or “abortion”) in tsetse, a viviparous and relatively long-lived fly with high maternal allocation. We consider how age-dependent patterns of abortion depend on the developmental stage of offspring and find that, as per previous laboratory studies, older females have higher rates of abortion at the late-larval stage, while egg-stage abortions are high both for very young and older females. We track the reproductive output of individual females and find little evidence that experiencing an abortion is an adaptive strategy to improve future reproductive outcomes. After an abortion, females do not generally take less time to produce their next offspring, these offspring are not larger, and there is no sex bias towards females, the sex with presumed higher fitness returns (being slightly larger and longer-lived than males, and with high insemination rates). Abortion rates are higher for breeding females experiencing stress, measured as nutritional deprivation, which echoes previous work in tsetse and other viviparous species, i.e., humans and baboons. We discuss our results in the context of studies on reproductive loss across taxa and argue that this is an important yet often overlooked reproductive trait which can vary with maternal age and can also depend on environmental stressors

    Screening and field performance of powder-formulated insecticides on eave tube inserts against pyrethroid resistant Anopheles gambiae s.l.:an investigation into 'actives' prior to a randomized controlled trial in CĂŽte d'Ivoire

    Get PDF
    BACKGROUND: The widespread emergence of insecticide resistance in African malaria vectors remains one of the main challenges facing control programmes. Electrostatic coating that uses polarity to bind insecticide particles is a new way of delivering insecticides to mosquitoes. Although previous tests demonstrated the resistance breaking potential of this application method, studies screening and investigating the residual efficacy of a broader range of insecticides are necessary. METHODS: Eleven insecticide powder formulations belonging to six insecticide classes (pyrethroid, carbamate, organophosphate, neonicotinoid, entomopathogenic fungus and boric acid) were initially screened for residual activity over 4 weeks against pyrethroid resistant Anopheles gambiae sensu lato (s.l.) from the M'bĂ© valley, central CĂŽte d'Ivoire. Tests were performed using the eave tube assay that simulates the behavioural interaction between mosquitoes and insecticide-treated inserts. With the best performing insecticide, persistence was monitored over 12 months and the actual contact time lethal to mosquitoes was explored, using a range of transient exposure time (5 s, 30 s, 1 min up to 2 min) in the tube assays in laboratory. The mortality data were calibrated against overnight release-recapture data from enclosure around experimental huts incorporating treated inserts at the M'bĂ© site. The natural recruitment rate of mosquitoes to the tube without insecticide treatment was assessed using fluorescent dust particles. RESULTS: Although most insecticides assayed during the initial screening induced significant mortality (45-100%) of pyrethroid resistant An. gambiae during the first 2 weeks, only 10% beta-cyfluthrin retained high residual efficacy, killing 100% of An. gambiae during the first month and > 80% over 8 subsequent months. Transient exposure for 5 s of mosquitoes to 10% beta-cyfluthrin produced 56% mortality, with an increase to 98% when contact time was extended to 2 min (P = 0.001). In the experimental hut enclosures, mortality of An. gambiae with 10% beta-cyfluthrin treated inserts was 55% compared to similar rate (44%) of mosquitoes that contacted the inserts treated with fluorescent dusts. This suggests that all host-seeking female mosquitoes that contacted beta-cyfluthrin treated inserts during host-seeking were killed. CONCLUSION: The eave tube technology is a novel malaria control approach which combines house proofing and targeted control of anopheline mosquitoes using insecticide treated inserts. Beta-cyfluthrin showed great promise for providing prolonged control of pyrethroid resistant An. gambiae and has potential to be deployed year-round in areas where malaria parasites are transmitted by highly pyrethroid resistant An. gambiae across sub-Saharan Africa

    Efficacy of a ‘lethal house lure’ against Culex quinquefasciatus from BouakĂ© city, CĂŽte d’Ivoire

    Get PDF
    Background: Eave tube technology is a novel method of insecticide application that uses an electrostatic coating system to boost insecticide efficacy against resistant mosquitoes. A series of previous experiments showed encouraging insecticidal effects against malaria vectors. This study was undertaken to assess the effects of the eave tube approach on other Culicidae, in particular Culex quinquefasciatus, under laboratory and semi-field conditions. Methods: Larvae of Cx. quinquefasciatus from BouakĂ© were collected and reared to adult stage, and World Health Organization (WHO) cylinder tests were performed to determine their resistance status. WHO standard 3-min cone bioassays were conducted using PermaNet 2.0 netting versus eave tube-treated inserts. To assess the transient exposure effect on Cx. quinquefasciatus, eave tube assay utilizing smelly socks as attractant was performed with exposure time of 30 s, 1 min, and 2 min on 10% beta-cyfluthrin-treated inserts. Residual activity of these treated inserts was then monitored over 9 months. Field tests involving release–recapture of Cx. quinquefasciatus within enclosures around experimental huts fitted with windows and untreated or insecticide-treated eave tubes were conducted to determine house entry preference and the impact of tubes on the survival of this species. Results: BouakĂ© Cx. quinquefasciatus displayed high resistance to three out of four classes of insecticides currently used in public health. After 3 min of exposure in cone tests, 10% beta-cyfluthrin-treated inserts induced 100% mortality in Cx. quinquefasciatus, whereas the long-lasting insecticidal net (LLIN) only killed 4.5%. With reduced exposure time on the eave tube insert, mortality was still 100% after 2 min, 88% after 1 min, and 44% after 30 s. Mortality following 1 h exposure on 10% beta-cyfluthrin-treated insert was > 80% continuously up to 7 months post-treatment. Data suggest that Cx. quinquefasciatus have a stronger preference for entering a house through the eaves than through windows. Beta-cyfluthrin-treated inserts were able to kill 51% of resistant Cx. quinquefasciatus released within the enclosure. Conclusions: Eave tubes are a novel method for delivery of insecticide to the house. They attract nuisance host-seeking Cx. quinquefasciatus mosquitoes and are as effective in controlling them as they are against pyrethroid-resistant Anopheles gambiae, despite the high level of resistance Cx. quinquefasciatus have developed
    corecore