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Iteroparous parents face a trade-off between allocating current resources to
reproduction versus maximizing survival to produce further offspring. Par-
ental allocation varies across age and follows a hump-shaped pattern across
diverse taxa, includingmammals, birds and invertebrates. This nonlinear allo-
cation pattern lacks a general theoretical explanation, potentially becausemost
studies focus on offspring number rather than quality and do not incorporate
uncertainty or age-dependence in energy intake or costs. Here, we develop a
life-history model of maternal allocation in iteroparous animals. We identify
the optimal allocation strategy in response to stochasticity when energetic
costs, feeding success, energy intake and environmentally driven mortality
risk are age-dependent. As a case study, we use tsetse, a viviparous insect
that produces one offspring per reproductive attempt and relies on an uncer-
tain food supply of vertebrate blood. Diverse scenarios generate a hump-
shaped allocation when energetic costs and energy intake increase with age
and also when energy intake decreases and energetic costs increase or
decrease. Feeding success and environmentally driven mortality risk have
little influence on age-dependence in allocation. We conclude that ubiquitous
evidence for age-dependence in these influential traits can explain the
prevalence of nonlinear maternal allocation across diverse taxonomic groups.
1. Introduction
Maternal allocation of resources to offspring typically has a positive effect on
offspring traits such as longevity and fecundity and thereby offspring fitness
[1–4]. However, as resources are limited, allocation can negatively affect
maternal survival and future reproduction [5–8]. Mothers therefore face a
trade-off between current and future reproductive allocation. Maternal physio-
logical state influences this allocation trade-off, and maternal state can vary
with age, as foraging efficiency may decrease [9], physiological functions
decline and cellular damage accumulates [10–13], with the result that mothers
can face an increased risk of death as they get older [1,14].

In many systems, maternal allocation tends to decline with age, termed
reproductive senescence [10,15,16]. Explanations of such senescence are based
on the declining strength of natural selection with age [6], permitting the
accumulation of deleterious mutations [17] or the fixation of alleles with a pleio-
tropic effect that favour fitness early in life but have negative effects later on
[18]. A particular formulation of such explanations is the ‘disposable soma’,
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whereby investment in early-life fitness traits is traded off
against maintenance and later-life survival and reproduction
[8]. High allocation of resources into early reproduction may
be favoured under high mortality risk, but then damage
accumulation and increasing constraints on resource acquisition
reduce reproduction as an individual ages [19]. Alternatively,
reproductive restraint in later life may be an adaptive strategy
to cope with the accumulation of reproductive damage and
the associated increase in mortality [20].

Allocation of resources by iteroparous females often
increases and then decreases with age, a nonlinear allocation
pattern observed across taxonomic groups (mammals, birds,
invertebrates) in both laboratory and wild populations
[4,10,15,21–23]. For younger mothers, allocation may increase
with age asmothers gain experience in breeding and in acquir-
ing food [7,15,22,24]. Allocation may then subsequently
decline in later life due to the drivers mentioned above. To
our knowledge, only one study predicted an increase and
decrease in fecundity as a by-product of natural selection
[25] and few—if any—theoretical studies predict this lifetime
reproductive resources allocation pattern, from an initial
increase to a later-life decline.

Most iteroparous females face some uncertainty in energy
dynamics in terms of acquiring resources and using them
(e.g. metabolic costs) [26,27]. Energy dynamics can also
change with age due to the effects of experience [7,15,22],
damage accumulation [10–13] and declining movement
ability [9]. Most models do not incorporate how variation
in energy dynamics [15,19] impacts the evolutionary strategy
of resource allocation, although stochasticity has been
shown to impact life histories, with different phenotypes
being optimal in stochastic versus constant environments
[28]. Models that consider variation in resource acquisi-
tion do not incorporate stochasticity or age-dependence
in food availability and acquisition costs [29]. To our knowl-
edge, only two models have shown how environmental
uncertainty influences optimal maternal allocation under
scenarios of varying food availability [26,27], modifying
the balance between reproduction, maintenance and energy
storage. These studies did not, however, link stochasticity to
age-dependent allocation.

Current models may also be inadequate as they tend to
focus on offspring number rather than offspring quality
[19,20,30–32], which may underestimate the extent of repro-
ductive senescence. The focus on offspring number is, in
part, due to classic evolutionary theory of ageing assuming
that all offspring are of equal quality (in terms of their life-
time reproductive success) [6,8]. However, offspring quality
can decrease with maternal age because of epigenetic factors,
changing offspring environment or constraints on maternal
resource acquisition and allocation [22,33]. Later-born off-
spring have lower fitness and less relative reproductive
value to parents, which increases the steepness of the age-
related decline in the strength of natural selection and
hence of reproductive senescence [32,34,35].

Here, we investigate how stochasticity and age-dependence
in energydynamics influencematernal allocation in iteroparous
females. We develop a state-dependent model to calculate the
optimal maternal allocation strategy with respect to maternal
age and energy reserves, focusing on allocation in a single off-
spring at a time. We introduce stochasticity in energetic
costs—in terms of the amount of energy required to forage
successfully and individual differences in metabolism—and
in feeding success. We systematically assess how allocation
is influenced by age-dependence in energetic costs, feeding
success, energy intake per successful feeding attempt and
environmentally driven mortality.

We use, as a case study, a viviparous and iteroparous
insect, tsetse (Glossina spp.). Tsetse are relatively long-lived
flies, surviving up to three months in the wild [36–38],
with the potential for allocation trade-offs between each
birth similar to long-lived vertebrates [10,15,16]. Reproduc-
tion is highly costly for tsetse as mothers can give birth to
offspring as large as themselves [36,39]. Maternal allocation
is key for offspring survival [40,41], as there is no self-feed-
ing after birth: larvae pupate, relying on maternal reserves
until emerging as an adult 20–30 days later [38,42]. Tsetse
have access to a rich food supply—vertebrate blood [42]—
but this can be highly uncertain, requiring finding a host
and avoiding its defences (e.g. swatting) [36,43], which
introduces stochasticity in the flight duration and distance
as well as the bloodmeal volume and hence in the energetic
costs of flight and blood digestion [36,38,43]. While there
was previously mixed support for age-dependent maternal
allocation in tsetse [44–46], a recent laboratory study
demonstrated hump-shaped allocation with age in Glossina
morsitans morsitans [23].

Using our model, we identify scenarios with an optimal
resource allocation strategy that leads to a hump-shaped
maternal allocation in iteroparous females. We show
that this nonlinear allocation pattern emerges in diverse scen-
arios, and the wide-ranging empirical evidence for age effects
on the traits involved can explain why nonlinear allocation is
found across numerous iteroparous animals.
2. Methods
(a) The model
Using stochastic dynamic programming [47,48], we calculate
the optimal amount of reserves M that mothers allocate to
each offspring depending on their own reserves R and age A.
The optimal life-history strategy is then the set of allocation
decisions M (R, A) over the whole lifespan that maximizes
the total reproductive success of distant descendants. All
model parameters and values are described in table 1. The
model set-up allows the optimal strategy to be anywhere on
the continuum from extreme capital (females build up stored
reserves that are used for reproduction) to extreme income
breeding (females do not store reserves across breeding
events and use only those acquired during feeding), given
their ecology [49].
(b) State variables
Maternal reserves R take values between Rmin (at or below which
an individual dies) and Rmax. Here, units of reserves are arbitrary
but as an example could represent milligrams of fat, as this is the
major macronutrient allocated from mother to offspring [50].
Each mother’s lifespan is divided into time periods (t), equival-
ent to the time needed to complete one reproductive cycle.
A mother’s age A is thus the number of time periods t multiplied
by the duration of each period. The model was parameterized
such that these limits (Rmax, Amax) do not influence the strategy
because they are unlikely to be reached.



Table 1. Optimal allocation strategy model parameters. Parameter values for tsetse in the baseline and range of values explored during model evaluation
(’—’ means no range of values were explored for that parameter).

symbol description baseline value range explored

variables

R reserve state 0 to 50 —

A age with At= 9 × t 0 to 270 —

M maternal allocation decision 0 to 50 —

parameters

t time period (number of reproductive cycles) 1 to 30 —

Tmax maximum time period 30 —

Rmin reserve level at or below which individuals die 0 —

Rmax maximum level of reserves 50 —

d environmentally driven mortality rate 1/11 0.09 to 0.21

q probability of successfully feeding {t = 1, t > 1} {0.35; 0.9} {0.35; 0.54 to 1}

z number of feeding opportunities per time period 4 —

y energy gained per successful feeding attempt 6 2 to 13

c energetic costs 7 1 to 42

p energy required to survive the non-feeding phase 8 —
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(c) Trait dynamics
Reserves R vary linearly over time, and at the start of period
t + 1 R is:

Rtþ1n,j ¼ Rtn,j �Mt þ ny� (cþ j) and

n ¼ [0 . . . z] and j ¼ {�1,0,1},
ð2:1Þ

Rt denotes the maternal reserves at the start of period t, Mt is
maternal allocation for period t, ny is the total energy intake
(y units of energy per successful feeding attempt, n times
per period), c denotes energetic costs of basal metabolism,
food-seeking movements and egg production and j represents
stochasticity in costs (costs being c� 1, c or cþ 1 with probability
0.25, 0.5 or 0.25, respectively). An individual has z feeding oppor-
tunities per time period with a probability qt of success (which
may vary with age). Feeding opportunities are assumed to be
independent, so the probability of successfully feeding n times is:

P(n) ¼ qnt � (1� qt)
z�n n ¼ [0 . . . z]: ð2:2Þ

(d) Offspring production
If the optimal decision is not to allocate any resources (M�

t ¼ 0),
then no offspring can be produced. If resources are allocated
ðM�

t . 0Þ, then a juvenile offspring is produced. Here, we con-
sider a specific case when offspring rely on maternal reserves
for survival until maturity. As such, if maternal allocation
M�

t exceeds the energy required to survive the non-feeding
phase until adulthood ( p), an adult offspring is produced. The
reserves at the start of adulthood R1 of this offspring are equal
to the maternal allocation M�

t minus p.

(e) Mortality
Mothers die when they run out of reserves (Rt � Rmin). They also
face environmentally driven mortality at rate d, for example, the
risk of dying from predation or inclement weather.

( f ) Fitness calculation
The decisions are found working backwards from t = Tmax

(assuming zero fitness at Tmax). The expected fitness h of a
mother at time period t, given her reserves R, age A and
allocation M is:

h(Rt,At j Mt) ¼ f (Mt � p)þ (1� dt)

�
Xz

n¼0

X1
j¼�1

(w(Rtþ1n,j ) � v(Rtþ1n,j ,Atþ1) : qn,j : cn,j) :

ð2:3Þ

Fitness is the sum of the immediate gain in fitness f (of produ-
cing an adult offspring) and the expected future reproductive
success v. The expected future reproductive success v is con-
ditional on individuals avoiding environmentally driven
mortality, (1� dt), and not starving to death, w > 0, which
depends on the state of maternal reserves at the start of the next
time step Rtþ1n,j . The future state Rtþ1n,j depends on the decision
Mt, as well as the probabilistic feeding success qn,j and costs cn,j.

w(Rtþ1n,j ) ¼
0, Rtþ1n,j � Rmin

1, Rtþ1n,j . Rmin

�
: ð2:4Þ

At each time, the expected future reproductive success v is
obtained from the allocation Mt, which maximizes h for a
given state of maternal reserves R and age A:

v(Rt,At) ¼ max
M

{h(Rt,Atj Mt)} : ð2:5Þ

More information about the optimization process can be
found in the electronic supplementary material.

The immediate gain in fitness f is a function of offspring qual-
ity (i.e. the expected reproductive success during the offspring’s
lifetime given its energy reserves at the start of adulthood) and
depends on maternal allocation Mt minus the energy needed
to survive the non-feeding phase p. To calculate f, we run
repeated backwards iterations (over several generations [51]),
initially assuming a Gompertz function for f :

f (Mt) ¼ k1e�k2e�k3(Mt�p)
where k1 ¼ 1, k2 ¼ 5, and

k3 ¼ 0:15:
ð2:6Þ

We obtain an array containing the values of fitness v for a
given state, v(R,A): Keeping only values at the first time period



Table 2. Age-dependent parameter variation. Linear or asymptotic age-dependent functions of energetic costs (ct), probability of successfully feeding (qt),
energy gained per successful feeding attempt (yt) and environmentally driven mortality (dt).

age dependence equation values rationale

energetic costs ct
increasing linearly ct= c1 + c2 × t c1 = 2, 4 or 6 increasing difficulties in host searching and flying as

damage accumulates [11,12]c2 = 0.5, 1, 1.5, 2, 2.5 or 3

decreasing

asymptotically

ct= c1 × (1.2 + e−c2×t) c1 = 1, 2, 3, 4, 5 or 6 no development costs of flight muscles, thoracic cuticle,

or reproductive structures post maturity [58,59,62];

increased vision at maturity [63] improves host

searching

c2 = 0.5 or 1

energy gained per successful feeding attempt yt
increasing linearly yt= y1 + y2 × t y1= 6 energy transfer efficiency increases past first reproduction

or digestion improvesy2 = 0.1, 0.2, 0.3, 0.4 or 0.5

increasing

asymptotically

yt = y1 × (1− e−y2×t) y1 = 6, 7, 8, 9, 10 or 11 fully developed gut at maturity with more volume for

blood [39]y2 = 0.5, 1, 1.5 or 2

decreasing

linearly

yt= y1− y2×t y1 = 6, 7, 8, 9, 10 or 11 digestion decreases because of gut deterioration

y2 = 0.1, 0.2 or 0.3

probability of successfully feeding qt
increasing

asymptotically

qt= q1/(0.9 + e−q2×t) q1 = {0.35; 0.9} for {t = 1, t > 1} experience increasing host searching and host defence

escapeq2 = 0.5, 1, 1.5 or 2

decreasing

linearly

qt= q1− q2 × t q1 = {0.35; 0.9} for {t = 1, t > 1} host searching decreases as olfaction decreases with age

[64]q2 = 0.01, 0.02 or 0.03

environmentally driven mortality rate dt
increasing linearly dt= d1 + d2 × t d1 = 1/11 flying ability decreases as damage accumulates [11,12],

increasing predation and host swatting risksd2 = 0.002, 0.004, 0.006, 0.008 or 0.010
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Proc.R.Soc.B

289:20211884

4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

31
 M

ar
ch

 2
02

2 
t = 1, we obtain the fitness of offspring upon reaching adulthood.
We divide this value by the highest fitness value (in this iteration
at t = 1) to keep the fitness between 0 and 1. We run the backward
iteration for the next generation to calculate the updated fitness of
offspring produced upon reaching adulthood, f :

f (Mt � p) ¼ v(R1,A1) =max {v(R1,A1)} for all R1 and with R1

¼ Mt � p:

ð2:7Þ

We repeat that process for 10 generations, by which time the
frequency distribution of the f values converges (electronic
supplementary material).

(g) Forward simulation
We simulated the life histories of 1000 mothers (electronic sup-
plementary material, code modified from [52]) following the
optimization strategy and the reserves at the start of adulthood
R1, the distribution of which was determined using an iterative
procedure as described in [53] (electronic supplementary
material). For each individual, we calculated maternal allocation
Mt, maternal reserves Rt and relative allocation Mt=Rt at each
time period t to understand how resources are partitioned
between mother and offspring.

(h) Model assumptions for tsetse
Each reproductive cycle (t) is nine days long, from egg laying
in utero to birth, as observed in G. morsitans morsitans at 25°C
[54,55]. We set Mt to zero for the first two time periods, as it
takes 18–20 days before the first offspring is produced in the
wild [56] and a mother gives birth to her first offspring at the
start of the third time period (19–20 days, see details in electronic
supplementary material). The maximum lifespan is set at Amax=
270 days as, in the wild, individuals live on average 60–90 days,
and fewer than 1% survive beyond 270 days [37,38,42]. Environ-
mentally driven mortality is set such that two-thirds of
individuals are expected to die before reaching 100 days old, as
in the wild, mortality reaches 90% by 100 days [37,38,42].
Tsetse have four feeding opportunities per time period t (every
2–3 days [42]). The feeding success qt is lower when t = 1
(q1 ¼ 0:35Þ, as newly emerged tsetse are relatively inactive up
to 2 days post emergence [57], and flight muscles take 8–10
days to fully develop [58–60]. After this point, feeding success
is high, qt ¼ 0:9 (see details in electronic supplementary
material), given stronger host detection abilities [61].
(i) Model evaluation
We consider how the optimal strategy varies when there is age-
dependence in resource acquisition, energetic costs and survival.
Specifically, we include varying scenarios with an age-dependent
increase or decrease in energetic costs (ct), feeding success (qt),
energy intake per successful feeding attempt (yt) and environ-
mentally driven mortality rate (dt) (table 2). We consider the
age-dependence of parameters one at a time or in pairs
(table 3), altering the slope, intercept or asymptote of the
age-dependent function (linear or asymptotic function). The
parameter space exploration was designed so that no age-
dependent parameter would cause the net gain in resources to
fall below Rmin or above Rmax before 100 days of age, and there



Table 3. Model evaluation. Scenarios with age-dependent parameters, individually or in pairs, and with a quadratic downward model being the better fit to
the simulated maternal allocation data (proportions in brackets). The goodness-of-fit is also provided with the pseudo R2 conditional value (proportion of
variance explained by the fixed and random terms for the model fit, accounting for individual identity) being above 0.7 or not (proportions in brackets). The
parameters varying are the energetic costs (ct), probability of successfully feeding (qt), energy gained per successful feeding attempt (yt), and environmentally
driven mortality (dt) (table 2).

age-dependent parameters
better fit quadratic downward/
number of scenarios evaluated

conditional pseudo R2 value above
0.7/number of scenarios evaluated

ct linear increase 7/18 (0.39) 0/18 (0)

ct asymptotic decrease 1/12 (0.08) 0/12 (0)

yt linear increase 0/5 (0) 0/5 (0)

yt linear decrease 18/18 (1) 1/18 (0.06)

yt asymptotic increase 10/24 (0.42) 0/24 (0)

yt linear decrease 0/3 (0) 0/3 (0)

qt asymptotic increase 0/4 (0) 0/4 (0)

dt linear increase 0/5 (0) 0/5 (0)

ct linear increase yt linear increase 39/90 (0.9) 0/90 (0)

yt linear decrease 144/324 (0.44) 14/324 (0.04)

yt asymptotic increase 297/432 (0.69) 17/432 (0.05)

qt asymptotic increase 36/72 (0.5) 1/72 (0.01)

qt linear decrease 12/54 (0.22) 0/54 (0)

dt linear increase 39/90 (0.43) 0/90 (0)

ct asymptotic decrease yt linear decrease 135/216 (0.625) 2/216 (0.01)

qt linear decrease 11/36 (0.31) 0/36 (0)
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was not 100% mortality before this time. Our aim is to identify
whether the observed reproductive senescence can arise from
optimal maternal allocation. As such, we do not impose a decline
in selection in later life as all offspring are potentially equally
valuable at all ages (for the same maternal allocation), and we
assume there are no mutations. However, mothers may vary allo-
cation of resources to offspring with age, which will then result
in offspring of different quality and may lead to reproductive
senescence if offspring quality decreases with maternal age.

For each scenario, we run the backward iteration process
with these age-dependent functions, obtain the allocation strat-
egy and simulate the life history of 1000 individuals based on
the novel strategy. We then fit quadratic and linear models to
the reproduction of these individuals using the lme function,
nlme package [65] in R [66]. The response variable is the
maternal allocation Mt, and explanatory variables are time
period t and t2 (for the quadratic fit only), with individual
identity as a random term.

We use likelihood ratio tests to compare linear and quadratic
models using the anova function (package nlme [65]) with the
maximum-likelihoodmethod [67]. If the comparison is significant
( p-value < 0.05), we considered the quadratic model to have a
better fit, otherwise the linear model is considered more parsimo-
nious. We were particularly interested in identifying scenarios
where the fit was quadratic with a negative quadratic term, to
understand nonlinear allocation patterns found in iteroparous
animals in general [4,10,15,21,22] and tsetse in particular [23].

It is worth noting that caution is required when interpreting
quadratic parameters in terms of senescence to infer an initial
increase of reproductive performance until a peak or plateau fol-
lowed by a decrease of reproductive performance. This is
because the presence of a statistically significant negative quadra-
tic coefficient does not necessarily indicate a hump-shaped curve
but can also represent a case of diminishing returns where allo-
cation plateaus in later life but does not decline (hence, no
reproductive senescence). In our case, we were confident that
the negative quadratic term would be appropriate given that
this was the best fit to our empirical data [23]—which were
also analysed using more flexible approaches.

For each scenario, the pseudo R2 conditional value (pro-
portion of variance explained by the fixed and random terms,
accounting for individual identity) is calculated to assess the
goodness-of-fit of the lme model, on a scale from 0 to 1, using
the ‘r.squared’ function, package gabtool [68,69].

( j) Nonlinear maternal allocation in tsetse
To help explain the drivers behind the nonlinear allocation pattern
observed in tsetse in the laboratory [23], we focused on model
scenarios where the downward quadraticmodel fits the simulated
allocation data with a pseudo R2 conditional value above 0.7
(given the marked diminution in the frequency of scenarios
with R2 past that value; electronic supplementary material). We
then selected the scenario where the fitted parameters for the
quadratic fit were within a 90% CI of the parameters for the quad-
ratic fit to the tsetse laboratory allocation data (Mt= 10.41 + 5.20 ×
t− 0.40 × t2 [23]; electronic supplementary material).
3. Results
Exploring first the baseline case of the model, the optimal
allocation decision is dependent on maternal reserves but
independent of age (figure 1a, solid grey line). Individuals
do not build up reserves across breeding events and instead
allocate nearly all available reserves to each offspring, as
the relative allocation is close to 1 (figure 1b,c, solid grey
line). They maintain just enough reserves to make the risk
of starvation negligible.
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Figure 1. Maternal allocation (a), relative allocation (b) or maternal reserves (c) for the baseline model (solid grey line) or the selected tsetse hump-shaped allocation
pattern (dashed sky-blue line). Average maternal or relative allocation or reserves of 1000 mothers for 12 reproductive cycles (x-axis). The error bars are the s.d. of the
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pseudo R2 value above 0.7. The line in dotted blue depicts the scenario clo-
sest to the quadratic fit of the tsetse laboratory data (which is in dashed
black) [23]. (Online version in colour.)
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(a) Model evaluation
We predicted a nonlinear (hump-shaped) pattern of allo-
cation in 53% (749/1403) of the scenarios evaluated. Thirty-
five of these quadratic downward scenarios fit the simulated
data with a conditional pseudo R2 value above 0.7 (table 3
and figure 2).

One scenario had a single parameter that is age-dependent:
a linear decrease in energy intake per successful feeding
attempt yt. When considering age-dependence in two par-
ameters, a hump-shaped allocation was primarily observed
when energetic costs ct increased linearly in combination
with an asymptotic increase in energy intake yt, a linear
decrease in yt or an asymptotic increase in feeding
success qt. We also obtained a hump-shaped allocation with
an asymptotic decrease in costs ct, in combination with a
linear decrease in energy intake yt.
(b) Nonlinear maternal allocation in tsetse
Considering age-dependence in parameters (tables 2 and 3),
out of the scenarios for which a quadratic downwards
model was the better fit and a conditional pseudo R2 value
above 0.7 of that fit, we selected one scenario (figure 2) that
was the best fit to the laboratory data [23] (i.e. quadratic fit
parameters within a 90% CI of parameters for the quadratic
fit to the laboratory data [23]; electronic supplementary
material), termed ‘hump-shaped‘ (figure 1). In this scenario,
energetic costs increase linearly (ct = c1 + c2 × t with c1 = 2
and c2 = 2) and energy intake increases asymptotically (yt = y1
× (1− e−y2×t) with y1 = 11 and y2 = 0.5). The fitted function
based on the simulations for the maternal allocation pattern
is M(t) = 10.19 + 4.31t− 0.34t2.

Maternal allocation decreases with age for a given level
of reserves in the associated optimal allocation strategy (elec-
tronic supplementary material). Relative allocation decreases
over time in the simulated allocation data (figure 1b, dashed
sky-blue line), while reserves increase (figure 1c, dashed
sky-blue line).
4. Discussion
Our model predicts that optimal maternal allocation of
resources is nonlinear with age, when there is age-dependence
in key drivers of energy dynamics. Such a nonlinear relation-
ship between parental allocation and age has been found in
many species. Our model assumes no mutations and hence
provides further theoretical insight into the drivers of age-
dependent allocation in terms of optimal life-history allocation,
although we acknowledge that similar patterns can also arise
from changes in mutation pressure that are not considered in
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our model. The main parameters leading to a hump-shaped
optimal allocation are a combination of age-dependence
in energy intake and energetic costs. There is only one scenario
where age-dependence in feeding success generated a
hump-shaped allocation and no scenarios that included age-
dependence in environmentally driven mortality. The scenario
that best described the hump-shaped allocation observed in lab-
oratory tsetse [23] included an asymptotic increase in energy
intake combined with a linear increase in energetic costs.

In the context of theoretical models of maternal allocation
and empirical evidence [4,7,15,19–23], our model confirms
allocation to be age-independent without damage accumu-
lation, age-dependence in key traits or a specific focus on
the terminal investment near the end of a fixed lifespan
[6,70–72]. Adding stochasticity into the energetic costs with-
out age-dependence does not lead to age-dependent
allocation. This fits with theoretical predictions that stochasti-
city in overhead costs of reproduction (for example
reproductive structures like milk glands) is not sufficient to
influence maternal allocation over time [73,74].

Our model confirms that a hump-shaped maternal allo-
cation [4,10,15,21,23] can be an adaptive strategy in
iteroparous animals, without specifically imposing a declin-
ing selection pressure with age, under a diverse set of
scenarios. Specifically, optimal nonlinear allocation is found
in scenarios with an increase in energy intake and energetic
costs, and those with a decrease in energy intake on its
own or combined with an increase or decrease in energetic
costs. These scenarios confirm the impact on allocation of
gains in experience in breeding and in acquiring food
[7,15,22] and increasing energetic costs across the lifespan
because of damage accumulation [7,15,19,22]. The evidence
for age-dependence in such traits is wide-ranging across sys-
tems, from a decrease in energetic costs with an improved
lactation ability (e.g. seals [24]), an improved energy transfer
efficiency (rats [75]), or reduced metabolic requirements post
maturation (tsetse [58,59,62]), to an increase in energy intake
with an improved mobility post maturation (tsetse [58,59,63])
or a decrease in energy intake later in life because of gut
deterioration (Drosophila [76]) or other physiological deterio-
rations. Such evidence could explain why these nonlinear
patterns of maternal allocation are found across diverse taxo-
nomic groups. Imposing a declining selection with age by
relaxing the hypothesis that all offspring are equal may
potentially nuance our predictions about nonlinear parental
allocation. We hope our model will inspire future work on
age-dependent allocation under varying assumptions about
offspring quality.

Our model shows that age-dependence in feeding success
is not a strong driver of a hump-shaped allocation, as only
one such scenario had a good quadratic downward fit to
the data. Previous studies have shown that small variations
around intermediate levels of energy availability can lead to
large non-monotonic changes in age-independent optimal
allocation, but variation has less influence around low or
high energy availability levels [26]. Age-dependence in feed-
ing success in our model may drive energy availability to
high or low levels, limiting variations in allocation and pre-
venting hump-shaped patterns from being optimal strategies.

We found no effect of age-dependence in mortality on
maternal allocation, in contrast to previous theoretical
studies, where higher or lower age-independent mortality
has been shown to shift the optimal allocation of resources
from maintenance to reproduction [19]. This contrast could
be explained by the fact that our model does not explicitly
consider allocation towards maintenance per se, rather indi-
viduals maintain maternal reserves above Rmin to prevent
condition-dependent death. We also do not consider
damage accumulation depending on maintenance, which
would increase the risk of damage-associated mortality
with age, and potentially shift the allocation trade-off
towards increased reproduction.

Our results represent the expected population-level aver-
age maternal allocation with respect to age, which may not
necessarily capture the individual strategies. Stable individ-
ual differences in state-dependent adaptive behaviour have
been shown to occur in another theoretical study in ecological
contexts of intermediate favourability [77], which could be
similar to what tsetse experience with rich food (vertebrate
blood) and high risk (host swatting defences and predation).
Although there is no variation within populations in the
strategies in our model, for a given parameter set there is a
single optimal strategy: individual-level variation in realized
behaviour can emerge from stochastic events in the simu-
lations. However, there were no strong divergences of
behaviour between individuals, with individual trajectories
being fairly similar (see electronic supplementary material,
figure S9).

The hump-shaped allocation observed in tsetse in the lab-
oratory [23] could potentially reflect an evolutionarily
optimal strategy best explained by an age-dependent increase
in energy intake, e.g. through experience or developing a
larger gut [74], and an age-dependent increase in energetic
costs, as flight, for example, may be impaired due to
damage accumulation [16,17]. Relative allocation decreases
with age and older females allocate less reserves to reproduc-
tion in comparison to younger females, regardless of their
own reserves. This concurs with predictions of adaptive
later-life reproductive restraint as a functional explanation for
reproductive senescence [20], whereby maternal allocation
decreases with age to reduce risks of increased mortality
associated with accrued damage due to reproduction [20]
or starvation with declining energy dynamics.

A caveat is that the only available data on within-individual
patterns of allocation with age in tsetse are from a laboratory
study with a population of flies that has been in the labora-
tory for many generations [23], and we cannot conclude
how well our model would explain patterns in the wild. In
cross-sectional studies, there is a slight increase in allocation
with age, as observed at earlier ages both in the laboratory
[23] and in our model, but no later-life decline [50,78]. The
lack of reproductive senescence in the wild could be linked
to shorter lifespans, with wild flies being more susceptible
to death from starvation and predation [43,79]. A limitation
of the field data is that individual tsetse cannot be tracked
across their lifespan, and pregnant females are only caught
during particular seasons of the year. As such, we may not
be able to observe reproductive senescence in the wild,
even if it occurred, due to the cross-sectional data currently
available [50,78].

In summary, we provide a mechanistic explanation
behind the pattern of increase-then-decrease in maternal
allocation, which is driven by evolutionary constraints with
age-dependent effects on energy dynamics, confirming the
possibility of later-life reproductive restraint. Our model
also provides a more general framework to understand
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optimal reproductive allocation in iteroparous breeders. By
tracking maternal allocation, maternal reserves and relative
allocation, we show what strategic choices individuals make
given their ecology, anywhere on the continuum from
extreme capital to extreme income breeding. With our
particular parameters tailored to tsetse biology, we find an
income breeding strategy as we predicted given that tsetse
acquire resources through feeding on protein-rich blood mul-
tiple times for each gestation cycle [50]. However, the same
model could also predict a capital breeding strategy when
applied to specific biology of other iteroparous breeders.
Indeed, we hope that this framework inspires future models
that could be fitted to long-term individual studies from
wild vertebrate populations such as red deer, bison or terns
[10,15] and thus ascertain the generality of our findings
both in field conditions and in diverse taxonomic groups.
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