14 research outputs found

    Manejo del conflicto generado por el desarrollo de las actividades turísticas y de exportación carbonera en la franja costera de Santa Marta

    Get PDF
    Esta investigación plantea una propuesta para el manejo del conflicto producido por el desarrollo de actividades económicas aparentemente incompatibles. Las causas que producen este conflicto son de origen especialmente institucional, con amplias contribuciones de las empresas turísticas (hoteleros), pero especialmente de las empresas exportadoras de carbón y sus actividades conexas, en concreto la transportadora. El análisis de este conflicto parte inicialmente de la identificación de las causas del problema, en él que se subrayan los efectos de las políticas de Estado en cuanto a la deficiente concertación con el nivel local, así como la ausencia de control por parte de las autoridades locales, que han producido conflictos ambientales, sociales, económicos y culturales sobre el territorio. La exploración recurre a precisar la relación entre el desarrollo de estas actividades y el conflicto, para examinar luego sus evidencias a través de un recuento histórico respecto a la evolución de la presencia de los sectores y sus reacciones sociales en el espacio geográfico en cuestión. Además, se revisan y analizan los efectos que se está produciendo en la población, el territorio y los ecosistemas. Se parte de una información casi inexistente sobre el objeto de la investigación, por lo cual se abordaron a los distintos actores directos o indirectos del conflicto para conocer su opinión y su posición. La interacción con los actores se constituyó para esta investigación en un soporte vital en el enfoque de la problemática y en cómo abordarla a la luz de la compleja red de actividades propias de los sectores abordados.Incluye bibliografía, anexo

    Use of BABA and INA As Activators of a Primed State in the Common Bean (Phaseolus vulgaris L.)

    Get PDF
    To survive in adverse conditions, plants have evolved complex mechanisms that prime their defense system to respond and adapt to stresses. Their competence to respond to such stresses fundamentally depends on its capacity to modulate the transcriptome rapidly and specifically. Thus, chromatin dynamics is a mechanism linked to transcriptional regulation and enhanced defense in plants. For example, in Arabidopsis, priming of the SA-dependent defense pathway is linked to histone lysine methylation. Such modifications could create a memory of the primary infection that is associated with an amplified gene response upon exposure to a second stress-stimulus. In addition, the priming status of a plant for induced resistance can be inherited to its offspring. However, analyses on the molecular mechanisms of generational and transgenerational priming in the common bean (Phaseolus vulagris L.), an economically important crop, are absent.Here, we provide evidence that resistance to P. syringae pv. phaseolicola infection was induced in the common bean with the synthetic priming activators BABA and INA. Resistance was assessed by evaluating symptom appearance, pathogen accumulation, changes in gene expression of defense genes, as well as changes in the H3K4me3 and H3K36me3 marks at the promoter-exon regions of defense-associated genes. We conclude that defense priming in the common bean occurred in response to BABA and INA and that these synthetic activators primed distinct genes for enhanced disease resistance.We hope that an understanding of the molecular changes leading to defense priming and pathogen resistance will provide valuable knowledge for producing disease-resistant crop varieties by exposing parental plants to priming activators, as well as to the development of novel plant protection chemicals that stimulate the plant's inherent disease resistance mechanisms

    An Autophagy-Related Kinase Is Essential for the Symbiotic Relationship between Phaseolus vulgaris and Both Rhizobia and Arbuscular Mycorrhizal Fungi

    Get PDF
    Eukaryotes contain three types of lipid kinases that belong to the phosphatidylinositol 3-kinase (PI3K) family. In plants and Saccharomyces cerevisiae, only PI3K class III family members have been identified. These enzymes regulate the innate immune response, intracellular trafficking, autophagy, and senescence. Here, we report that RNAi-mediated downregulation of common bean (Phaseolus vulgaris) PI3K severely impaired symbiosis in composite P. vulgaris plants with endosymbionts such as Rhizobium tropici and Rhizophagus irregularis. Downregulation of Pv-PI3K was associated with a marked decrease in root hair growth and curling. Additionally, infection thread growth, root-nodule number, and symbiosome formation in root nodule cells were severely affected. Interestingly, root colonization by AM fungi and the formation of arbuscules were also abolished in PI3K loss-of-function plants. Furthermore, the transcript accumulation of genes encoding proteins known to interact with PI3K to form protein complexes involved in autophagy was drastically reduced in these transgenic roots. RNAi-mediated downregulation of one of these genes, Beclin1/Atg6, resulted in a similar phenotype as observed for transgenic roots in which Pv-PI3K had been downregulated. Our findings show that an autophagy-related process is crucial for the mutualistic interactions of P. vulgaris with beneficial microorganismsInstituto de Fisiología y Recursos Genéticos VegetalesFil: Estrada-Navarrete, Georgina. Universidad Nacional Autónoma de México. Instituto de Biotecnología. Departamento de Biología Molecular de Plantas; MéxicoFil: Cruz-Mireles, Neftaly. Universidad Nacional Autónoma de México. Instituto de Biotecnología. Departamento de Biología Molecular de Plantas; MéxicoFil: Lascano, Hernán Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Estudios Agropecuarios (UDEA); ArgentinaFil: Lascano, Hernán Ramiro. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales. ArgentinaFil: Alvarado-Affantranger, Xóchitl. Universidad Nacional Autónoma de México. Instituto de Biotecnología. Laboratorio Nacional de Microscopía Avanzada; MéxicoFil: Hernández-Barrera, Alejandra. Universidad Nacional Autónoma de México. Instituto de Biotecnología. Departamento de Biología Molecular de Plantas; MéxicoFil: Barraza, Aarón. Universidad Nacional Autónoma de México. Instituto de Biotecnología. Departamento de Biología Molecular de Plantas; MéxicoFil: Olivares, Juan E. Universidad Nacional Autónoma de México. Instituto de Biotecnología. Departamento de Biología Molecular de Plantas; MéxicoFil: Arthikala, Manoj-Kumar. Universidad Nacional Autónoma de México. Escuela Nacional de Estudios Superiores-Unidad León; MéxicoFil: Cárdenas, Luis. Universidad Nacional Autónoma de México. Instituto de Biotecnología. Departamento de Biología Molecular de Plantas; MéxicoFil: Quinto, Carmen. Universidad Nacional Autónoma de México. Instituto de Biotecnología. Departamento de Biología Molecular de Plantas; MéxicoFil: Sanchez, Federico. Universidad Nacional Autónoma de México. Instituto de Biotecnología. Departamento de Biología Molecular de Plantas; Méxic

    Molecular characterization and phylogenetic analysis of a Squash leaf curl virus isolate from Baja California Sur, Mexico

    Get PDF
    Background The begomovirus, squash leaf curl virus (SLCuV) is one of the causal agents of squash leaf curl (SLC) disease, which is among the most destructive diseases of cucurbit crops in tropical, subtropical, and semiarid regions worldwide. This disease was originally reported in the American continent with subsequent spread to the Mediterranean basin. Up to now, SLCuV has only been detected by PCR in Mexico. This study provides the first complete sequence of a Mexican SLCuV isolate from Baja California Sur (BCS). In addition, the genome of the virus was characterized, establishing its phylogenetic relationship with other SLCuV isolates. Methods The full genome (DNA-A and DNA-B) was amplified by rolling circle amplification, cloned and sequenced and the open reading frames (ORF) were annotated. Virus identification was performed according to the International Committee on Taxonomy of Viruses (ICTV) criteria for begomovirus species demarcation. To infer evolutionary relationship with other SLCuV isolates, phylogenetic and recombination analyses were performed. Results The SLCuV-[MX-BCS-La Paz-16] genome (DNA-A and DNA-B) had 99% identity with SLCuV reference genomes. The phylogenetic analysis showed that SLCuV-[MX-BCS-La Paz-16] is closely related to SLCuV isolates from the Middle East (Egypt, Israel, Palestine and Lebanon). No evidence of interspecific recombination was determined and iterons were 100% identical in all isolates in the SLCuV clade. Conclusions SLCuV-[MX-BCS-La Paz-16] showed low genetic variability in its genome, which could be due to a local adaptation process (isolate environment), suggesting that SLCuV isolates from the Middle East could have derived from the southwestern United States of America (USA) and northwestern Mexico

    Highly diverse root endophyte bacterial community is driven by growth substrate and is plant genotype-independent in common bean (Phaseolus vulgaris L.)

    No full text
    The common bean (Phaseolus vulgaris L.) is the most important grain legume in the human diet with an essential role in sustainable agriculture mostly based on the symbiotic relationship established between this legume and rhizobia, a group of bacteria capable of fixing atmospheric nitrogen in the roots nodules. Moreover, root-associated bacteria play an important role in crop growth, yield, and quality of crop products. This is particularly true for legume crops forming symbiotic relationships with rhizobia, for fixation of atmospheric N2. The main objective of this work is to assess the substrate and genotype effect in the common bean (Phaseolus vulgaris L.) root bacterial community structure. To achieve this goal, we applied next-generation sequencing coupled with bacterial diversity analysis. The analysis of the bacterial community structures between common bean roots showed marked differences between substrate types regardless of the genotype. Also, we were able to find several phyla conforming to the bacterial community structure of the common bean roots, mainly composed by Proteobacteria, Actinobacteria, Bacteroidetes, Acidobacteria, and Firmicutes. Therefore, we determined that the substrate type was the main factor that influenced the bacterial community structure of the common bean roots, regardless of the genotype, following a substrate-dependent pattern. These guide us to develop efficient and sustainable strategies for crop field management based on the soil characteristics and the bacterial community that it harbors

    The Class II trehalose 6-phosphate synthase gene PvTPS9 modulates trehalose metabolism in Phaseolus vulgaris nodules.

    Get PDF
    Legumes form symbioses with rhizobia, producing nitrogen-fixing nodules on the roots of the plant host. The network of plant signaling pathways affecting carbon metabolism may determine the final number of nodules. The trehalose biosynthetic pathway regulates carbon metabolism and plays a fundamental role in plant growth and development, as well as in plant-microbe interactions. The expression of genes for trehalose synthesis during nodule development suggests that this metabolite may play a role in legume-rhizobia symbiosis. In this work, PvTPS9, which encodes a Class II trehalose-6-phosphate synthase (TPS) of common bean (Phaseolus vulgaris), was silenced by RNA interference in transgenic nodules. The silencing of PvTPS9 in root nodules resulted in a reduction of 85% (± 1%) of its transcript, which correlated with a 30% decrease in trehalose contents of transgenic nodules and in untransformed leaves. Composite transgenic plants with PvTPS9 silenced in the roots showed no changes in nodule number and nitrogen fixation, but a severe reduction in plant biomass and altered transcript profiles of all Class II TPS genes. Our data suggest that PvTPS9 plays a key role in modulating trehalose metabolism in the symbiotic nodule and, therefore, in the whole plant

    Penaeus vannamei challenged with a Vibrio parahaemolyticus AHPND strain shows hepatopancreatic microbiota imbalance

    No full text
    White shrimp, Penaeus vannamei, farming represents one of the most important aquaculture activities in the world with a high growth rate. However, intensification processes induce negative side effects on the health of the organism, associated with a dysbiosis phenomenon. Consequently, illnesses, mainly attributable to Vibrio genus bacteria, have been reported in shrimp ponds. Studying the diversity and ecology of the associated bacteria in aquaculture systems is essential to prevent and control diseases. Therefore, the present study analyzes the bacterial load and microbial population variation in P. vannamei hepatopancreases infected with a pathogenic Vibrio parahaemolyticus strain (so-called CVP2) associated with acute hepatopancreatic necrosis disease (AHPND) under controlled conditions. The results showed an important change in the microbial community structure of the P. vannamei hepatopancreas. Furthermore, the presence of the Vibrio genus considerably increased and clearly dominated compared with the control. Dysbiosis of the hepatopancreatic microbiota and constrictions in the hepatopancreatic tubules (characteristic signs of in the early stage of AHPND) could be observed before the visible manifestation of the disease

    Bacterial communities of the psyllid pest Bactericera cockerelli (Hemiptera: Triozidae) Central haplotype of tomato crops cultivated at different locations of Mexico

    No full text
    Background The psyllid, Bactericera cockerelli, is an insect vector of ‘Candidatus Liberibacter’ causing “Zebra chip” disease that affects potato and other Solanaceae crops worldwide. In the present study, we analyzed the bacterial communities associated with the insect vector Bactericera cockerelli central haplotype of tomato crop fields in four regions from Mexico. Methods PCR was used to amplify the mitochondrial cytochrome oxidase I gene (mtCOI) and then analyze the single nucleotide polymorphisms (SNP) and phylogenetic analysis for haplotype identification of the isolated B. cockerelli. Moreover, we carried out the microbial diversity analysis of several B. cockerelli collected from four regions of Mexico through the NGS sequencing of 16S rRNA V3 region. Finally, Wolbachia was detected by the wsp gene PCR amplification, which is the B. cockerelli facultative symbiont. Also we were able to confirm the relationship with several Wolbachia strains by phylogenetic analysis. Results Our results pointed that B. cockerelli collected in the four locations from Mexico (Central Mexico: Queretaro, and Northern Mexico: Sinaloa, Coahuila, and Nuevo Leon) were identified, such as the central haplotype. Analyses of the parameters of the composition, relative abundance, and diversity (Shannon index: 1.328 ± 0.472; Simpson index 0.582 ± 0.167), showing a notably relatively few microbial species in B. cockerelli. Analyses identified various facultative symbionts, particularly the Wolbachia (Rickettsiales: Anaplasmataceae) with a relative abundance higher. In contrast, the genera of Sodalis and ‘Candidatus Carsonella’ (Gammaproteobacteria: Oceanospirillales: Halomonadaceae) were identified with a relatively low abundance. On the other hand, the relative abundance for the genus ‘Candidatus Liberibacter’ was higher only for some of the locations analyzed. PCR amplification of a fragment of the gene encoding a surface protein (wsp) of Wolbachia and phylogenetic analysis corroborated the presence of this bacterium in the central haplotype. Beta-diversity analysis revealed that the presence of the genus ‘Candidatus Liberibacter’ influences the microbiota structure of this psyllid species. Conclusions Our data support that the members with the highest representation in microbial community of B. cockerelli central haplotype, comprise their obligate symbiont, Carsonella, and facultative symbionts. We also found evidence that among the factors analyzed, the presence of the plant pathogen affects the structure and composition of the bacterial community associated with B. cockerelli

    Effects of Vermicompost Leachate versus Inorganic Fertilizer on Morphology and Microbial Traits in the Early Development Growth Stage in Mint (Mentha spicata L.) And Rosemary (Rosmarinus officinalis L.) Plants under Closed Hydroponic System

    No full text
    The objective of this study was to compare the morphology of M. spicata and R. officinalis plants, and the relative abundance quantification, colony-forming units, ribotypes, and biofilm former bacteria under an inorganic fertilizer and the use of vermicompost leachate in the rhizosphere under a closed hydroponic system. In mint (Mentha spicata) plants treated with the vermicompost leachate, growth increase was determined mainly in root length from an average of 38 cm in plants under inorganic fertilizer to 74 cm under vermicompost leachate. In rosemary (Rosmarinus officinalis), no changes were determined between the two treatments. There were differences in the compositions of microbial communities: For R. officinalis, eight ribotypes were identified, seven for inorganic fertilizer and four for vermicompost leachate. For M. spicata, eight ribotypes were identified, three of them exclusive to vermicompost leachate. However, no changes were observed in microbial communities between the two treatments. Otherwise, some changes were observed in the compositions of these communities over time. In both cases, the main found phylum was Firmicutes, with 60% for R. officinalis and 80% for M. spicata represented by the Bacillus genus. In conclusion, the use of vermicompost leachate under the hydroponic system is a viable alternative to achieve an increase in the production of M. spicata, and for both plants (mint and rosemary), the quality of the product and the microbial communities that inhabited them remained unaltered
    corecore