39 research outputs found

    Influence of the angular distribution function of incident particles on the microstructure and anomalous scaling behavior of thin films

    Get PDF
    The microstructure and the scaling properties of films grown by plasma enhanced chemical vapor deposition are reproduced with a discrete model that takes into account the angular distribution function of the particles and the lateral growth of the films. Both the experimental and simulated surfaces exhibit a granular microstructure and an anomalous scaling behavior characterized by values of the growth exponent β that vary with the scale of measurement. Depending on the angular distribution function used in the model, values of β ranging from 0.86 to 0.2 are obtained

    Preparation and Optimization of Fluorescent Thin Films of Rosamine-SiO2/TiO2 Composites for NO2 Sensing

    Get PDF
    The incorporation of a prototypical rosamine fluorescent dye from organic solutions into transparent and microstructured columnar TiO2 and SiO2 (MO2) thin films, prepared by evaporation at glancing angles (GAPVD), was evaluated. The aggregation of the adsorbed molecules, the infiltration efficiency and the adsorption kinetics were studied by means of UV-Vis absorption and fluorescence spectroscopies. Specifically, the infiltration equilibrium as well as the kinetic of adsorption of the emitting dye has been described by a Langmuir type adsorption isotherm and a pseudosecond order kinetic model, respectively. The anchoring mechanism of the rosamine to the MO2 matrix has been revealed by specular reflectance Fourier transform infrared spectroscopy and infiltration from aqueous solutions at different pH values. Finally, the sensing performance towards NO2 gas of optimized films has been assessed by following the changes of its fluorescence intensity revealing that the so-selected device exhibited improved sensing response compared to similar hybrid films reported in the literature.MINECO MAT2014-57652-C2-2-RMINECO PCIN-2015-169-C02-0

    Mechanically switchable wetting petal effect in self‐patterned nanocolumnar films on poly(Dimethylsiloxane)

    Get PDF
    Switchable mechanically induced changes in the wetting behavior of surfaces are of para-mount importance for advanced microfluidic, self‐cleaning and biomedical applications. In this work we show that the well‐known polydimethylsiloxane (PDMS) elastomer develops self‐patterning when it is coated with nanostructured TiO2 films prepared by physical vapor deposition at glancing angles and subsequently subjected to a mechanical deformation. Thus, unlike the disordered wrinkled surfaces typically created by deformation of the bare elastomer, well‐ordered and aligned micro‐scaled grooves form on TiO2/PDMS after the first post‐deposition bending or stretching event. These regularly patterned surfaces can be reversibly modified by mechanical deformation, thereby inducing a switchable and reversible wetting petal effect and the sliding of liquid droplets. When performed in a dynamic way, this mechanical actuation produces a unique capacity of liquid droplets (water and diiodomethane) transport and tweezing, this latter through their selective capture and release depending on their volume and chemical characteristics. Scanning electron and atomic force microscopy studies of the strained samples showed that a dual‐scale rough-ness, a parallel alignment of patterned grooves and their reversible widening upon deformation, are critical factors controlling this singular sliding behavior and the possibility to tailor their response by the appropriate manufacturing of surface structures.European Union 899352Ministerio de Ciencia e Innovación PID2019- 110430GB-C21, PID2019-109603RA-I0, MAT2013-40852-R, MAT2013- 42900-PMinisterio de Economía y Competitividad 201560E055Junta de Andalucía AT17-6079, P18-RT-348

    Relationship between scaling behavior and porosity of plasma-deposited TiO2 thin films

    Get PDF
    The growth of TiO2 thin films prepared by plasma enhanced chemical vapor deposition has been studied by analyzing their roughness with the concepts of the dynamic scaling theory. Differences in the growth and roughness exponents have been found depending on the composition of the plasma by using either O2 or mixtures Ar+ O2 as plasma gas and titanium isopropoxide as the precursor. The slope of the representations of the film roughness against the deposition time yielded values of the exponent β of 0.45 and 0.32 for, respectively, thin films prepared with plasmas of O2 or mixtures Ar+ O2. Meanwhile, values of the exponent α of 1.15 and 1.89/0.35 were deduced from the power spectral density representations for the films prepared under these two experimental conditions. These values are congruent with growth processes dominated, respectively, by shadowing or diffusion processes. A columnar microstructure was observed by scanning electron microscopy for the thin films prepared with pure oxygen. Meanwhile, homogeneous films were obtained with mixtures of Ar+ O2. The open porosity of the films was determined by measuring water adsorption-desorption isotherms with a quartz crystal monitor. This analysis showed that in the samples prepared with mixtures of Ar+ O2 the porosity consisted exclusively of micropores (d2 nm). It is concluded that the different growth mechanisms found by just changing the chemistry of the plasma are responsible for the quite distinct microstructures, porosities, and optical properties obtained for the films.Ministerio de Educación y Ciencia NAN2004-09317-C04-01 y MAT2007-6576

    Influence of Titanium Oxide Pillar Array Nanometric Structures and Ultraviolet Irradiation on the Properties of the Surface of Dental Implants: A Pilot Study

    Get PDF
    Aim: Titanium implants are commonly used as replacement therapy for lost teeth and much current research is focusing on the improvement of the chemical and physical properties of their surfaces in order to improve the osseointegration process. TiO2, when it is deposited in the form of pillar array nanometric structures, has photocatalytic properties and wet surface control, which, together with UV irradiation, provide it with superhydrophilic surfaces, which may be of interest for improving cell adhesion on the peri-implant surface. In this article, we address the influence of this type of surface treatment on type IV and type V titanium discs on their surface energy and cell growth on them. Materials and methods: Samples from titanium rods used for making dental implants were used. There were two types of samples: grade IV and grade V. In turn, within each grade, two types of samples were differentiated: untreated and treated with sand blasting and subjected to double acid etching. Synthesis of the film consisting of titanium oxide pillar array structures was carried out using plasma-enhanced chemical vapor deposition equipment. The plasma was generated in a quartz vessel by an external SLAN-1 microwave source with a frequency of 2.45 GHz. Five specimens from each group were used (40 discs in total). On the surfaces to be studied, the following determinations were carried out: (a) X-ray photoelectron spectroscopy, (b) scanning electron microscopy, (c) energy dispersive X-ray spectroscopy, (d) profilometry, (e) contact angle measurement or surface wettability, (f) progression of contact angle on applying ultraviolet irradiation, and (g) a biocompatibility test and cytotoxicity with cell cultures. Results: The application of ultraviolet light decreased the hydrophobicity of all the surfaces studied, although it did so to a greater extent on the surfaces with the studied modification applied, this being more evident in samples manufactured in grade V titanium. In samples made in grade IV titanium, this difference was less evident, and even in the sample manufactured with grade IV and SLA treatment, the application of the nanometric modification of the surface made the surface optically less active. Regarding cell growth, all the surfaces studied, grouped in relation to the presence or not of the nanometric treatment, showed similar growth. Conclusions. Treatment of titanium oxide surfaces with ultraviolet irradiation made them change temporarily into superhydrophilic ones, which confirms that their biocompatibility could be improved in this way, or at least be maintained

    Room temperature synthesis of porous SiO2 thin films by plasma enhanced chemical vapor deposition

    Get PDF
    Synthesis of porous SiO2 thin films in room temperature was carried out using plasma enhanced chemical vapor deposition (CVD) in an electron cyclotron resonance microwave reactor with a downstream configuration.The gas adsorption properties and the type of porosity of the SiO2 thin films were assessed by adsorption isotherms of toluene at room temperature.The method could also permit the tailoring synthesis of thin films when both composition and porosity can be simultaneously and independently controlled. The result shows that it is possible to control the microstructure of oxide thin films deposited by room temperature plasma enhanced chemical vapor depositon (PECVD) by scarificial polymeric organic layers.Ministerio de Ciencia y Tecnología MAT2001-2820European Union ENV4-CT97-063

    A transparent TMPyP/TiO2 composite thin film as an HCl sensitive optochemical gas sensor

    Get PDF
    Tetracationic porphyrin (TMPyP) molecules were incorporated into an optically transparent TiO2 thin film, prepared by Glancing Angle Physical Vapour Deposition (GAPVD), by simple infiltration (at pH 6.4). The preparation of optically transparent TMPyP/TiO2 composite thin films provides a method for the integration of the porphyrin molecules into photonic devices for direct monitoring of gases. Previously, UV-visible and fluorescence spectral techniques have been used to study the reversible protonation of TMPyP in aqueous solution. The optical spectrum of TMPyP shows an intense Soret band at 423 nm with a 22 nm red shift upon protonation by HCl. The experimental conditions for monitoring the concentration of HCl gas by absorption spectroscopy have been optimized. The maximum absorbance change was observed at the Soret band wavelength. A selected temperature of 80 °C and a 300 s recovery period were found to be the optimum operating parameters (response time t50 = 16.8 ± 0.7 s). The composite with smaller surface concentration of TMPyP (¿ = 0.3 × 10-9 mol cm -2) presented the best detection limit (0.1 ppm). The response of the composite sensor was highly stable for several months.Ministerio de Educación y Ciencia PET2007 0363 01/ 02, TEC201021830C0201, CSD20070000

    TiO2-SiO2 one-dimensional photonic crystals of controlled porosity by glancing angle physical vapour deposition

    Get PDF
    Herein we present a synthetic route to attain porous one-dimensional photonic crystals of high optical quality. The method employed, based on the alternate deposition of TiO2 and SiO2 porous layers by glancing angle physical vapour deposition, yields a highly accessible interconnected pore network throughout the entire multilayer structure. Furthermore, it allows a strict control over the average size and density of the interstitial sites, which results in the precise tuning of the refractive index of the individual layers and thus of the optical response of the ensemble. The controlled environmental response of the multilayer is confirmed by the optical monitoring of the infiltration of liquids of different refractive index.España Ministerio de Ciencia e innovación MAT2008-02166 MAT2007-65764Consolider Projects CSD2007-00007 CSD2008-00023Junta de Andalucía FQM-3579 TEP227

    Coarse-grained approach to amorphous and anisotropic materials in kinetic Monte Carlo thin-film growth simulations: A case study of TiO₂ and ZnO by plasma-enhanced chemical vapor deposition

    Get PDF
    The growth of TiO₂ and ZnO thin films is studied by means of coarse-grained kinetic Monte Carlo simulations under conditions typically encountered in plasma-enhanced chemical vapor deposition experiments. The basis of our approach is known to work well to simulate the growth of amorphous materials using cubic grids and is extended here to reproduce not only the morphological characteristics and scaling properties of amorphous TiO₂ but also the growth of polycrystalline ZnO with a good approximation, including the evolution of the film texture during growth and its dependence on experimental conditions. The results of the simulations have been compared with available experimental data obtained by X-ray diffraction, analysis of the texture coefficients, atomic force microscopy, and scanning electron microscopy

    Nanocolumnar growth of thin films deposited at oblique angles: Beyond the tangent rule

    Get PDF
    The growth of nanostructured physical vapor deposited thin films at oblique angles is becoming a hot topic for the development of a large variety of applications. Up to now, empirical relations, such as the so-called tangent rule, have been uncritically applied to account for the development of the nanostructure of these thin films even when they do not accurately reproduce most experimental results. In the present paper, the growth of thin films at oblique angles is analyzed under the premises of a recently proposed surface trapping mechanism. The authors demonstrate that this process mediates the effective shadowing area and determines the relation between the incident angle of the deposition flux and the tilt angle of the columnar thin film nanostructures. The analysis of experimental data for a large variety of materials obtained in our laboratory and taken from the literature supports the existence of a connection between the surface trapping efficiency and the metallic character of the deposited materials. The implications of these predictive conclusions for the development of new applications based on oblique angle deposited thin films are discussed.Junta de Andalucía P09-CTS- 5189, TEP5283, FQM-6900Ministerio de Ciencia e Innovación CSD2008-00023, MAT2010-21228, MAT2010-1844
    corecore