2,419 research outputs found

    Surface location of sodium atoms attached to He-3 nanodroplets

    Get PDF
    We have experimentally studied the electronic 3p3s3p\leftarrow 3s excitation of Na atoms attached to 3^3He droplets by means of laser-induced fluorescence as well as beam depletion spectroscopy. From the similarities of the spectra (width/shift of absorption lines) with these of Na on 4^4He droplets, we conclude that sodium atoms reside in a ``dimple'' on the droplet surface. The experimental results are supported by Density Functional calculations at zero temperature, which confirm the surface location of sodium on 3^3He droplets, and provide a microscopic description of the ``dimple'' structure.Comment: 4 pages, 5 figure

    Finite size effects in adsorption of helium mixtures by alkali substrates

    Full text link
    We investigate the behavior of mixed 3He-4He droplets on alkali surfaces at zero temperature, within the frame of Finite Range Density Functional theory. The properties of one single 3He atom on 4He_N4 droplets on different alkali surfaces are addressed, and the energetics and structure of 4He_N4+3He_N3 systems on Cs surfaces, for nanoscopic 4He drops, are analyzed through the solutions of the mean field equations for varying number N3 of 3He atoms. We discuss the size effects on the single particle spectrum of 3He atoms and on the shapes of both helium distributions.Comment: 12 pages, and 12 figures (PNG format

    Spin-orbit effects on the Larmor dispersion relation in GaAs quantum wells

    Get PDF
    We have studied the relevance of spin-orbit coupling to the dispersion 00009 relation of the Larmor resonance observed in inelastic light scattering and electron-spin resonance experiments on GaAs quantum wells. We show that the spin-orbit interaction, here described by a sum of Dresselhaus and Bychkov-Rashba terms, couples Zeeman and spin-density excitations. We have evaluated its contribution to the spin splitting as a function of the magnetic field BB, and have found that in the small BB limit, the spin-orbit interaction does not contribute to the spin splitting, whereas at high magnetic fields it yields a BB independent contribution to the spin splitting given by 2(λR2λD2)2(\lambda_R^2-\lambda_D^2), with λR,D\lambda_{R,D} being the intensity of the Bychkov-Rashba and Dresselhaus spin-orbit terms.Comment: To be published in Physical Review

    Isospin phases of vertically coupled double quantum rings under the influence of perpendicular magnetic fields

    Get PDF
    Vertically coupled double quantum rings submitted to a perpendicular magnetic field BB are addressed within the local spin-density functional theory. We describe the structure of quantum ring molecules containing up to 40 electrons considering different inter-ring distances and intensities of the applied magnetic field. When the rings are quantum mechanically strongly coupled, only bonding states are occupied and the addition spectrum of the artificial molecules resembles that of a single quantum ring, with some small differences appearing as an effect of the magnetic field. Despite the latter has the tendency to flatten the spectra, in the strong coupling limit some clear peaks are still found even when B0B\neq 0 that can be interpretated from the single-particle energy levels analogously as at zero applied field, namely in terms of closed-shell and Hund's-rule configurations. Increasing the inter-ring distance, the occupation of the first antibonding orbitals washes out such structures and the addition spectra become flatter and irregular. In the weak coupling regime, numerous isospin oscillations are found as a function of BB.Comment: 27 pages, 11 figures. To be published in Phys. Rev.

    An ab initio theory of double odd-even mass differences in nuclei

    Full text link
    Two aspects of the problem of evaluating double odd-even mass differences D_2 in semi-magic nuclei are studied related to existence of two components with different properties, a superfluid nuclear subsystem and a non-superfluid one. For the superfluid subsystem, the difference D_2 is approximately equal to 2\Delta, the gap \Delta being the solution of the gap equation. For the non-superfluid subsystem, D_2 is found by solving the equation for two-particle Green function for normal systems. Both equations under consideration contain the same effective pairing interaction. For the latter, the semi-microscopic model is used in which the main term calculated from the first principles is supplemented with a small phenomenological addendum containing one phenomenological parameter supposed to be universal for all medium and heavy atomic nuclei.Comment: 7 pages, 10 figures, Report at Nuclear Structure and Related Topics, Dubna, Russia, July 2 - July 7, 201

    Interaction of the single-particle and collective degrees of freedom in non-magic nuclei: the role of phonon tadpole terms

    Full text link
    A method of a consistent consideration of the phonon contributions to mass and gap operators in non-magic nuclei is developed in the so-called g^2 approximation, where g is the low-lying phonon creation amplitude. It includes simultaneous accounting for both the usual non-local terms and the phonon tadpole ones. The relations which allow the tadpoles to be calculated without any new parameters are derived. As an application of the results, the role of the phonon tadpoles in the single-particle strength distribution and in the single-particle energies and gap values has been considered. Relation to the problem of the surface nature of pairing is discussed.Comment: 22 pages, 7 figure

    Surface behaviour of the pairing gap in a slab of nuclear matter

    Get PDF
    The surface behaviour of the pairing gap previously studied for semi-infinite nuclear matter is analyzed in the slab geometry. The gap-shape function is calculated in two cases: (a) pairing with the Gogny force in a hard-wall potential and (b) pairing with the separable Paris interaction in a Saxon-Woods mean-field potential. It is shown that the surface features are preserved in the case of slab geometry, being almost independent of the width of the slab. It is also demonstrated that the surface enhancement is strengthened as the absolute value of chemical potential μ|\mu| decreases which simulates the approach to the nucleon drip line.Comment: 12 pages, 2 figure
    corecore