491 research outputs found

    Synthetic Generation of Events for Address-Event-Representation Communications

    Get PDF
    Address-Event-Representation (AER) is a communications protocol for transferring images between chips, originally developed for bio-inspired image processing systems. Such systems may consist of a complicated hierarchical structure with many chips that transmit images among them in real time, while performing some processing (for example, convolutions). In developing AER based systems it is very convenient to have available some kind of means of generating AER streams from on-computer stored images. In this paper we present a method for generating AER streams in real time from images stored in a computer’s memory. The method exploits the concept of linear feedback shift register random number generators. This method has been tested by software and compared to other possible algorithms for generating AER streams. It has been found that the proposed method yields a minimum error with respect to the ideal situation. A hardware platform that exploits this technique is currently under development

    The perceptive experience of the heritage landscape

    Full text link
    [EN] Education on heritage environments based on user experience is committed to understanding and enhancing the heritage landscape. The proposal prioritizes "experimenting" over "explaining" to reduce the digital divide and to guarantee equal access to information and knowledge. The urban environment of the church of the Santos Juanes is one of the most characteristic places in the history of the city of Valencia. In the same environment there are emblematic monuments such as the Lonja de la Seda and the Mercat Central of Valencia. Despite all of the above, the landscape has suffered considerable deterioration in recent decades. The lack of a safe urban space, the weak treatment of urban connections to monuments and the physical deterioration of the building have been the factors that have caused the creation of an environment conducive to alienating behaviors with the place. The high degree of alienation has led to the production of campaigns to prevent and prosecute these behaviors by the municipal administration, however there are no proposals to help understand and know these places. Currently, the redevelopment works of this environment are being undertaken, so it is of interest to propose an educational proposal about the heritage area to stimulate interest, learning, experience and exploration. Visits and workshops on the interpretation and sensitive experience of the cultural landscape bring citizens closer to experiencing the church of the Santos Juanes in a way not based on a data compilation discourse. In conclusion, experiencing, knowing and sharing these environments strengthens the relationship between citizens and their cultural heritage. At the same time, these exercises help to collect information on how citizens perceive and value their heritage environments.Barranco Donderis, A. (2022). The perceptive experience of the heritage landscape. Editorial Universitat Politècnica de València. 593-598. https://doi.org/10.4995/HERITAGE2022.2022.1566059359

    An Event-Driven Multi-Kernel Convolution Processor Module for Event-Driven Vision Sensors

    Get PDF
    Event-Driven vision sensing is a new way of sensing visual reality in a frame-free manner. This is, the vision sensor (camera) is not capturing a sequence of still frames, as in conventional video and computer vision systems. In Event-Driven sensors each pixel autonomously and asynchronously decides when to send its address out. This way, the sensor output is a continuous stream of address events representing reality dynamically continuously and without constraining to frames. In this paper we present an Event-Driven Convolution Module for computing 2D convolutions on such event streams. The Convolution Module has been designed to assemble many of them for building modular and hierarchical Convolutional Neural Networks for robust shape and pose invariant object recognition. The Convolution Module has multi-kernel capability. This is, it will select the convolution kernel depending on the origin of the event. A proof-of-concept test prototype has been fabricated in a 0.35 m CMOS process and extensive experimental results are provided. The Convolution Processor has also been combined with an Event-Driven Dynamic Vision Sensor (DVS) for high-speed recognition examples. The chip can discriminate propellers rotating at 2 k revolutions per second, detect symbols on a 52 card deck when browsing all cards in 410 ms, or detect and follow the center of a phosphor oscilloscope trace rotating at 5 KHz.Unión Europea 216777 (NABAB)Ministerio de Ciencia e Innovación TEC2009-10639-C04-0

    Inter-spikes-intervals exponential and gamma distributions study of neuron firing rate for SVITE motor control model on FPGA

    Get PDF
    This paper presents a statistical study on a neuro-inspired spike-based implementation of the Vector-Integration-To-End-Point motor controller (SVITE) and compares its deterministic neuron-model stream of spikes with a proposed modification that converts the model, and thus the controller, in a Poisson like spike stream distribution. A set of hardware pseudo-random numbers generators, based on a Linear Feedback Shift Register (LFSR), have been introduced in the neuron-model so that they reach a closer biological neuron behavior. To validate the new neuron-model behavior a comparison between the Inter-Spikes-Interval empirical data and the Exponential and Gamma distributions has been carried out using the Kolmogorov–Smirnoff test. An in-hardware validation of the controller has been performed in a Spartan6 FPGA to drive directly with spikes DC motors from robotics to study the behavior and viability of the modified controller with random components. The results show that the original deterministic spikes distribution of the controller blocks can be swapped with Poisson distributions using 30-bit LFSRs. The comparative between the usable controlling signals such as the trajectory and the speed profile using a deterministic and the new controller show a standard deviation of 11.53 spikes/s and 3.86 spikes/s respectively. These rates do not affect our system because, within Pulse Frequency Modulation, in order to drive the motors, time length can be fixed to spread the spikes. Tuning this value, the slow rates could be filtered by the motor. Therefore, this SVITE neuro-inspired controller can be integrated within complex neuromorphic architectures with Poisson-like neurons

    A 5 Meps $100 USB2.0 Address-Event Monitor-Sequencer Interface

    Get PDF
    This paper describes a high-speed USB2.0 Address- Event Representation (AER) interface that allows simultaneous monitoring and sequencing of precisely timed AER data. This low-cost (<$100), two chip, bus powered interface can achieve sustained AER event rates of 5 megaevents per second (Meps). Several boards can be electrically synchronized, allowing simultaneous synchronized capture from multiple devices. It has three AER ports, one for sequencing, one for monitoring and one for passing through the monitored events. This paper also describes the host software infrastructure that makes the board usable for a heterogeneous mixture of AER devices and that allows recording and playback of recorded data

    Improved Contrast Sensitivity DVS and its Application to Event-Driven Stereo Vision

    Get PDF
    This paper presents a new DVS sensor with one order of magnitude improved contrast sensitivity over previous reported DVSs. This sensor has been applied to a bio-inspired event-based binocular system that performs 3D event-driven reconstruction of a scene. Events from two DVS sensors are matched by using precise timing information of their ocurrence. To improve matching reliability, satisfaction of epipolar geometry constraint is required, and simultaneously available information on the orientation is used as an additional matching constraint.Ministerio de Economía y Competitividad PRI-PIMCHI-2011-0768Ministerio de Economía y Competitividad TEC2009-10639-C04-01Junta de Andalucía TIC-609

    Dynamic Vision Sensor integration on FPGA-based CNN accelerators for high-speed visual classification

    Get PDF
    Deep-learning is a cutting edge theory that is being applied to many fields. For vision applications the Convolutional Neural Networks (CNN) are demanding significant accuracy for classification tasks. Numerous hardware accelerators have populated during the last years to improve CPU or GPU based solutions. This technology is commonly prototyped and tested over FPGAs before being considered for ASIC fabrication for mass production. The use of commercial typical cameras (30fps) limits the capabilities of these systems for high speed applications. The use of dynamic vision sensors (DVS) that emulate the behavior of a biological retina is taking an incremental importance to improve this applications due to its nature, where the information is represented by a continuous stream of spikes and the frames to be processed by the CNN are constructed collecting a fixed number of these spikes (called events). The faster an object is, the more events are produced by DVS, so the higher is the equivalent frame rate. Therefore, these DVS utilization allows to compute a frame at the maximum speed a CNN accelerator can offer. In this paper we present a VHDL/HLS description of a pipelined design for FPGA able to collect events from an Address-Event-Representation (AER) DVS retina to obtain a normalized histogram to be used by a particular CNN accelerator, called NullHop. VHDL is used to describe the circuit, and HLS for computation blocks, which are used to perform the normalization of a frame needed for the CNN. Results outperform previous implementations of frames collection and normalization using ARM processors running at 800MHz on a Zynq7100 in both latency and power consumption. A measured 67% speedup factor is presented for a Roshambo CNN real-time experiment running at 160fps peak rate.Comment: 7 page

    Embedding Multi-Task Address-Event- Representation Computation

    Get PDF
    Address-Event-Representation, AER, is a communication protocol that is intended to transfer neuronal spikes between bioinspired chips. There are several AER tools to help to develop and test AER based systems, which may consist of a hierarchical structure with several chips that transmit spikes among them in real-time, while performing some processing. Although these tools reach very high bandwidth at the AER communication level, they require the use of a personal computer to allow the higher level processing of the event information. We propose the use of an embedded platform based on a multi-task operating system to allow both, the AER communication and processing without the requirement of either a laptop or a computer. In this paper, we present and study the performance of an embedded multi-task AER tool, connecting and programming it for processing Address-Event information from a spiking generator.Ministerio de Ciencia e Innovación TEC2006-11730-C03-0

    Live Demonstration: Retinal ganglion cell software and FPGA implementation for object detection and tracking

    Get PDF
    This demonstration shows how object detection and tracking are possible thanks to a new implementation which takes inspiration from the visual processing of a particular type of ganglion cell in the retina

    Retinal ganglion cell software and FPGA model implementation for object detection and tracking

    Get PDF
    This paper describes the software and FPGA implementation of a Retinal Ganglion Cell model which detects moving objects. It is shown how this processing, in conjunction with a Dynamic Vision Sensor as its input, can be used to extrapolate information about object position. Software-wise, a system based on an array of these of RGCs has been developed in order to obtain up to two trackers. These can track objects in a scene, from a still observer, and get inhibited when saccadic camera motion happens. The entire processing takes on average 1000 ns/event. A simplified version of this mechanism, with a mean latency of 330 ns/event, at 50 MHz, has also been implemented in a Spartan6 FPGA.European Commission FP7-ICT-600954Ministerio de Economía y Competitividad TEC2012-37868-C04-02Junta de Andalucía P12-TIC-130
    corecore