135 research outputs found

    Search For Gravitational Waves Through the Electromagnetic Faraday Rotation

    Get PDF
    A method is given which renders indirect detection of strong gravitational waves possible. This is based on the reflection (collision) of a linearly polarized electromagnetic shock wave from (with) a cross polarized impulsive and shock gravitational waves in accordance with the general theory of relativity. This highly non-linear process induces a detectable Faraday rotation in the polarization vector of the electromagnetic field.Comment: Final version. Minor revision, new figures and references are added. To appear in Physical Review

    Reflection of electromagnetic waves from mixtures of plane gravitational and scalar waves

    Get PDF
    We consider colliding wave packets consisting of hybrid mixtures of electromagnetic, gravitational and scalar waves. Irrespective of the scalar field, the electromagnetic wave still reflects from the gravitational wave. Some reflection processes are given for different choice of packets in which the Coulomb-like component Κ2\Psi_2 vanishes. Exact solution for multiple reflection of an electromagnetic wave from successive impulsive gravitational waves is obtained in a closed form. It is shown that a succesive sign flip in the Maxwell spinor arises as a result of encountering with an impulsive train (i.e. the Dirac's comb curvature) of gravitational waves. Such an observable effect may be helpful in the detection of gravitational wave bursts.Comment: 20 pages, 3 ps figures, small typos corrected, published versio

    The centrifugal force reversal and X-ray bursts

    Full text link
    Heyl (2000) made an interesting suggestion that the observed shifts in QPO frequency in type I X-ray bursts could be influenced by the same geometrical effect of strong gravity as the one that causes centrifugal force reversal discovered by Abramowicz and Lasota (1974). However, his main result contains a sign error. Here we derive the correct formula and conclude that constraints on the M(R) relation for neutron stars deduced from the rotational-modulation model of QPO frequency shifts are of no practical interest because the correct formula implies a weak condition R* > 1.3 Rs, where Rs is the Schwarzschild radius. We also argue against the relevance of the rotational-modulation model to the observed frequency modulations.Comment: 3 pages, Minor revisions, A&A Letters, in pres

    Back Reaction of Hawking Radiation on Black Hole Geometry

    Full text link
    We propose a model for the geometry of a dynamical spherical shell in which the metric is asymptotically Schwarzschild, but deviates from Ricci-flatness in a finite neighbourhood of the shell. Hence, the geometry corresponds to a `hairy' black hole, with the hair originating on the shell. The metric is regular for an infalling shell, but it bifurcates, leading to two disconnected Schwarzschild-like spacetime geometries. The shell is interpreted as either collapsing matter or as Hawking radiation, depending on whether or not the shell is infalling or outgoing. In this model, the Hawking radiation results from tunnelling between the two geometries. Using this model, the back reaction correction from Hawking radiation is calculated.Comment: Latex file, 15 pages, 4 figures enclosed, uses eps

    No-go theorem for false vacuum black holes

    Get PDF
    We study the possibility of non-singular black hole solutions in the theory of general relativity coupled to a non-linear scalar field with a positive potential possessing two minima: a `false vacuum' with positive energy and a `true vacuum' with zero energy. Assuming that the scalar field starts at the false vacuum at the origin and comes to the true vacuum at spatial infinity, we prove a no-go theorem by extending a no-hair theorem to the black hole interior: no smooth solutions exist which interpolate between the local de Sitter solution near the origin and the asymptotic Schwarzschild solution through a regular event horizon or several horizons.Comment: 16 pages, 1 figure, Latex, some references added, to appear in Classical and Quantum Gravit

    On critical behaviour in gravitational collapse

    Full text link
    We give an approach to studying the critical behaviour that has been observed in numerical studies of gravitational collapse. These studies suggest, among other things, that black holes initially form with infinitesimal mass. We show generally how a black hole mass formula can be extracted from a transcendental equation. Using our approach, we give an explicit one parameter set of metrics that are asymptotically flat and describe the collapse of apriori unspecified but physical matter fields. The black hole mass formula obtained from this metric exhibits a mass gap - that is, at the onset of black hole formation, the mass is finite and non-zero.Comment: 11 pages, RevTex, 2 figures (available from VH

    Pair of null gravitating shells I. Space of solutions and its symmetries

    Full text link
    The dynamical system constituted by two spherically symmetric thin shells and their own gravitational field is studied. The shells can be distinguished from each other, and they can intersect. At each intersection, they exchange energy on the Dray, 't Hooft and Redmount formula. There are bound states: if the shells intersect, one, or both, external shells can be bound in the field of internal shells. The space of all solutions to classical dynamical equations has six components; each has the trivial topology but a non trivial boundary. Points within each component are labeled by four parameters. Three of the parameters determine the geometry of the corresponding solution spacetime and shell trajectories and the fourth describes the position of the system with respect to an observer frame. An account of symmetries associated with spacetime diffeomorphisms is given. The group is generated by an infinitesimal time shift, an infinitesimal dilatation and a time reversal.Comment: 28 pages, 9 figure included in the text, Latex file using amstex, epic and graphi

    Self-gravitating fluid shells and their non-spherical oscillations in Newtonian theory

    Get PDF
    We summarize the general formalism describing surface flows in three-dimensional space in a form which is suitable for various astrophysical applications. We then apply the formalism to the analysis of non-radial perturbations of self-gravitating spherical fluid shells. Spherically symmetric gravitating shells (or bubbles) have been used in numerous model problems especially in general relativity and cosmology. A radially oscillating shell was recently suggested as a model for a variable cosmic object. Within Newtonian gravity we show that self-gravitating static fluid shells are unstable with respect to linear non-radial perturbations. Only shells (bubbles) with a negative mass (or with a charge the repulsion of which is compensated by a tension) are stable.Comment: 20 pages, to be published in the Astrophysical Journal, typos correcte

    Geometry of Deformations of Relativistic Membranes

    Full text link
    A kinematical description of infinitesimal deformations of the worldsheet spanned in spacetime by a relativistic membrane is presented. This provides a framework for obtaining both the classical equations of motion and the equations describing infinitesimal deformations about solutions of these equations when the action describing the dynamics of this membrane is constructed using {\it any} local geometrical worldsheet scalars. As examples, we consider a Nambu membrane, and an action quadratic in the extrinsic curvature of the worldsheet.Comment: 20 pages, Plain Tex, sign errors corrected, many new references added. To appear in Physical Review

    Gravitational collapse of Type II fluid in higher dimensional space-times

    Full text link
    We find the general solution of the Einstein equation for spherically symmetric collapse of Type II fluid (null strange quark fluid) in higher dimensions. It turns out that the nakedness and curvature strength of the shell focusing singularities carry over to higher dimensions. However, there is shrinkage of the initial data space for a naked singularity of the Vaidya collapse due to the presence of strange quark matter.Comment: RevTex4 style, 4 pages; Accepted in Phys. Rev.
    • 

    corecore