596 research outputs found

    Modelling split-Hopkinson pressure bar tests on quartz sand

    Get PDF
    FE modelling of a confined split Hopkinson pressure bar (SHPB) test on dry quartz sand was carried out using LS-DYNA in order to assess whether Material Model 5 could replicate experimental results, which would enable a more detailed investigation of the stress state in SHPB specimen. Quasi-static test data was used to select the material model input, and the model SHPB was set up to replicate the experimental conditions. The results show that Material Model 5 replicates the volumetric response provided as input data, but fails to predict the shear response observed in the quasi-static experiments. This was found to be due to the model treating the shear modulus as a constant rather than it increasing with strain, a feature which makes the Material Model 5 unsuitable for modelling SHPB tests on sand

    Effects of strain rate and moisture content on the behaviour of sand under one-dimensional compression

    Get PDF
    The influence of strain rate and moisture content on the behaviour of a quartz sand was assessed using high-pressure quasi-static (0.001 /s) and high-strain-rate (1000 /s) experiments under uniaxial strain. Quasi-static compression to axial stresses of 800 MPa was carried out alongside split Hopkinson pressure bar (SHPB) experiments to 400 MPa, where in each case lateral deformation of the specimen was prevented using a steel test box or ring, and lateral stresses were recorded. A significant increase in constrained modulus was observed between strain rates of 0.001 /s and 1000 /s, however a consistently lower Poisson's ratio in the dynamic tests minimised changes in bulk modulus. The reduction in Poisson’s ratio suggests that the stiffening of the sand in the SHPB tests is due to additional inertial confinement rather than an inherent strain-rate dependence. In the quasi-static tests the specimens behaved less stiffly with increasing moisture content, while in the dynamic tests the addition of water had little effect on the overall stiffness, causing the quasi-static and dynamic series to diverge with increasing moisture content

    Impact of dedicated women’s outreach workers (WOWs) on recruitment of women in ACTG clinical studies

    Get PDF
    Background: Despite efforts by the AIDS Clinical Trials Group (ACTG) to enroll representative numbers of diverse women, participation in ACTG studies in the United States remains largely white and male. To address this gap in women’s participation in ACTG research, a one-year pilot study of dedicated women’s outreach workers (WOWs) was proposed. Objectives: included demonstrating that targeted recruitment efforts can expand community awareness of ACTG research and ensuring successful enrollment of women at the respective clinical research sites. Methods: The pilot study was conducted at two U.S. sites (Rutgers New Jersey Medical School and Emory Ponce de Leon Center in Atlanta, Georgia). The WOWs worked with site personnel to identify and reach out to women living with HIV and/or Hepatitis B or C at their respective sites and encourage them to join a clinical trial registry for those interested in participating in future clinical trials. Results: The Rutgers WOW approached 127 potential participants (of whom 100 joined the WOW registry) and screened 35 participants for open ACTG studies. The Emory WOW approached 120 participants, enrolling 86 into the WOW registry, and screened 51 potential participants for open ACTG studies during the WOW’s tenure. The majority of women screened at both sites were women of color. Conclusions: The WOW study team identified several lessons learned that can inform future efforts to engage women living with HIV in clinical research. First, success in engaging women is proportional to level of funding and institutional support. Second, there is a need for a more gender-inclusive scientific agenda as women are more likely to participate if studies address topics of interest to them. Third, meaningful engagement is a two-way street

    Temporally and spatially resolved reflected overpressure measurements in the extreme near field

    Get PDF
    The design of blast-resistant structures and protective systems requires a firm understanding of the loadings imparted to structures by blast waves. While empirical methods can reliably predict these loadings in the far field, there is currently a lack of understanding on the pressures experienced in the very near field, where physics-based numerical modelling and semi-empirical fast-running engineering model predictions can vary by an order of magnitude. In this paper, we present the design of an experimental facility capable of providing definitive spatially and temporally resolved reflected pressure data in the extreme near field (Z<0.5 m/kg1/3 ). The Mechanisms and Characterisation of Explosions (MaCE) facility is a specific near-field evolution of the existing Characterisation of Blast Loading (CoBL) facility, which uses an array of Hopkinson pressure bars embedded in a stiff target plate. Maraging steel pressure bars and specially designed strain gauges are used to increase the measurement capacity from 600 MPa to 1800 MPa, and 33 pressure bars in a radial grid are used to improve the spatial resolution from 25 mm to 12.5 mm over the 100 mm radius measurement area. In addition, the pressure bar diameter is reduced from 10 mm to 4 mm, which greatly reduces stress wave dispersion, increasing the effective bandwidth. This enables the observation of high-frequency features in the pressure measurements, which is vital for validating the near-field transient effects predicted by numerical modelling and developing effective blast mitigation methods

    Predicting crater formation from failure of pressurized water mains through analogy with buried explosive events

    Get PDF
    Brittle failure of a buried pressurized water pipe can result in rapid crater formation, causing debris to be thrown out over large distances as well as longer-term flooding and scour effects. Due to the potential for injury and property damage in a failure event, it is desirable to develop policies to enforce safe stand-off distances around high-risk pipes. Little published data are available on the formation of craters during the initial pressure release from a pipe burst, but an analogy can be made with buried explosives events, for which a large body of data exists. This paper uses finite-element modeling of buried pipe failures to assess the parameters affecting crater diameter, where pipe diameter, pressure, air content, and burial depth are shown to be significant. An explosive cratering tool is modified for use with water pipes by converting the energy release from a failing pipe to an equivalent mass of explosive. The modified tool reliably replicates the crater size from the modeling results, and accurately predicts the modeled crater size in new failure scenarios (r2=0.95), indicating the potential of the tool for use in developing policy on safe stand-off distances

    Role of Scalar Meson Resonances in $K_{L}^{0} \rightarrow \pi^{0} \gamma \gamma Decay

    Full text link
    Corrections to KL0→π0γγK_{L}^{0}\rightarrow \pi^{0} \gamma \gamma decay induced by scalar meson exchange are studied within chiral perturbation theory. In spite of bad knowledge of scalar-mesons parameters, the calculated branching ratio can be changed by a few percent.Comment: 18 pages of text, 2 figures (available upon request); preprint IJS-TP-16-94 , TUM-T31-63-94

    Far-field positive phase blast parameter characterisation of RDX and PETN based explosives

    Get PDF
    A significant amount of scientific effort has been dedicated to measuring and understanding the effects of explosions, leading to the development of semi-empirical methods for rapid prediction of blast load parameters. The most well-known of these, termed the Kingery and Bulmash method, makes use of polylogarithmic curves derived from a compilation of medium to large scale experimental tests performed over many decades. However, there is still no general consensus on the accuracy and validity of this approach, despite some researchers reporting consistently high levels of agreement. Further, it is still not known whether blast loading can be considered deterministic, or whether it is intrinsically variable, the extent of this variability, and the range and scales over which these variations are observed. This article critically reviews historic and contemporary blast experiments, including newly generated arena tests with RDX and PETN-based explosives, with a view to demonstrating the accuracy with which blast load parameters can be predicted using semi-empirical approaches

    Family Unification in Five and Six Dimensions

    Get PDF
    In family unification models, all three families of quarks and leptons are grouped together into an irreducible representation of a simple gauge group, thus unifying the Standard Model gauge symmetries and a gauged family symmetry. Large orthogonal groups, and the exceptional groups E7E_7 and E8E_8 have been much studied for family unification. The main theoretical difficulty of family unification is the existence of mirror families at the weak scale. It is shown here that family unification without mirror families can be realized in simple five-dimensional and six-dimensional orbifold models similar to those recently proposed for SU(5) and SO(10) grand unification. It is noted that a family unification group that survived to near the weak scale and whose coupling extrapolated to high scales unified with those of the Standard model would be evidence accessible in principle at low energy of the existence of small (Planckian or GUT-scale) extra dimensions.Comment: 13 pages, 2 figures, minor corrections, references adde
    • …
    corecore