29 research outputs found

    Assessment of Prone Positioning of Restrained, Seated Crewmembers in a Post Landing Stable 2 Orion Configuration

    Get PDF
    During the Orion landing and recovery subsystem design review, June 2009, it was noted that the human system and various vehicle systems, the environmental control and life support (ECLSS) and guidance, navigation and control (GN&C) systems for example, are negatively affected by Orion assuming a stable 2 (upside down; Figure A) configuration post landing. The stable 2 configuration is predicted to occur about 50% of the time based on Apollo landing data and modeling of the current capsule. The stable 2 configuration will be countered by an active up-righting system (crew module up-righting system; CMUS). Post landing balloons will deploy and inflate causing the vehicle to assume or maintain the stable 1 (up-right; Figure B) configuration. During the design review it was proposed that the up-righting system could be capable of righting the vehicle within 60 seconds. However, this time limit posed a series of constraints on the design which made it less robust than desired. The landing and recovery subsystem team requested an analysis of Orion vehicle systems as well as the human system with regard to the effect of stable 2 in order to determine if an up-righting response time greater than 60 seconds could be tolerated. The following report focuses on the assessment of the human system in the posture assumed when Orion is in the stable 2 configuration. Stable 2 will place suited, seated, and restrained crewmembers in a prone (facedown), head-up position for a period of time dependent on the functionality of the up-righting systems, ability of the crew to release themselves from the seat and restraints, and/or time to arrival of rescue forces. Given that the Orion seat and restraint system design is not complete and therefore, not available for evaluation, Space Medicine assessed how long a healthy but deconditioned crewmember could stay in this prone, restrained position and the physiological consequences of this posture by researching terrestrial analogs and considered the known physiological alterations and deconditioning experienced by long duration crewmembers

    The Space Medicine Exploration Medical Condition List

    Get PDF
    Exploration Medical Capability (ExMC) is an element of NASA s Human Research Program (HRP). ExMC's goal is to address the risk of the "Inability to Adequately Recognize or Treat an Ill or Injured Crewmember." This poster highlights the approach ExMC has taken to address this risk. The Space Medicine Exploration Medical Condition List (SMEMCL) was created to define the set of medical conditions that are most likely to occur during exploration space flight missions. The list was derived from the International Space Station Medical Checklist, the Shuttle Medical Checklist, in-flight occurrence data from the Lifetime Surveillance of Astronaut Health, and NASA subject matter experts. The list of conditions was further prioritized for eight specific design reference missions with the assistance of the ExMC Advisory Group. The purpose of the SMEMCL is to serve as an evidence-based foundation for the conditions that could affect a crewmember during flight. This information is used to ensure that the appropriate medical capabilities are available for exploration missions

    The Near Earth Asteroid Medical Conditions List

    Get PDF
    Purpose: The Exploration Medical Capability (ExMC) element is one of six elements within NASA s Human Research Program (HRP) and is responsible for addressing the risk of "the inability to adequately recognize or treat an ill or injured crewmember" for exploration-class missions. The Near Earth Asteroid (NEA) Medical Conditions List, constructed by ExMC, is the first step in addressing the above-mentioned risk for the 13-month long NEA mission. The NEA mission is being designed by NASA's Human Space Flight Architecture Team (HAT). The purpose of the conditions list is to serve as an evidence-based foundation for determining which medical conditions could affect a crewmember during the NEA mission, which of those conditions would be of concern and require treatment, and for which conditions a gap in knowledge or technology development exists. This information is used to focus research efforts and technology development to ensure that the appropriate medical capabilities are available for exploration-class missions. Scope and Approach: The NEA Medical Conditions List is part of a broader Space Medicine Exploration Medical Conditions List (SMEMCL), which incorporates various exploration-class design reference missions (DRMs). The conditions list contains 85 medical conditions which could occur during space flight and which are derived from several sources: Long-Term Surveillance of Astronaut Health (LSAH) in-flight occurrence data, The Space Shuttle (STS) Medical Checklist, The International Space Station (ISS) Medical Checklist, and subject matter expert opinion. Each medical condition listed has been assigned a clinical priority and a clinical priority rationale based on incidence, consequence, and mitigation capability. Implementation: The conditions list is a "living document" and as such, new conditions can be added to the list, and the priority of conditions on the list can be adjusted as the DRM changes, and as screening, diagnosis, or treatment capabilities change. The NEA medical conditions list was used recently as the basis for identifying gaps in in-flight medical evaluation (screening) capabilities. Learning Objectives: The audience will become familiar with the approach taken by NASA's Exploration Medical Capability element in addressing the risk of inability to recognize and treat medical conditions in the setting of a Near Earth Asteroid mission. Which one of the following statements is incorrect? a) The Near Earth Asteroid (NEA) medical conditions list includes 85 medical conditions which could occur during space flight. b) Each condition on the NEA medical conditions list has been assigned a clinical priority and a clinical priority rationale. c) The NEA medical conditions list targets a mission to Mars. d) The NEA medical conditions list should be viewed as a "living document" where new conditions can be added and clinical priorities adjusted to address changes in the design reference mission or medical capabilities. The incorrect answer is c). The NEA medical conditions list targets a mission to a Near Earth Asteroid

    Atrial Arrhythmia Summit: Post Summit Report

    Get PDF
    The Atrial Arrhythmia Summit brought together nationally and internationally recognized experts in cardiology, electrophysiology, exercise physiology, and space medicine in an effort to elucidate the mechanisms, risk factors, and management of atrial arrhythmias in the unique occupational cohort of the U.S. astronaut corps

    Atrial Arrhythmias in Astronauts - Summary of a NASA Summit

    Get PDF
    Background and Problem Definition: To evaluate NASA s current standards and practices related to atrial arrhythmias in astronauts, Space Medicine s Advanced Projects Section at the Johnson Space Center was tasked with organizing a summit to discuss the approach to atrial arrhythmias in the astronaut cohort. Since 1959, 11 cases of atrial fibrillation, atrial flutter, or supraventricular tachycardia have been recorded among active corps crewmembers. Most of the cases were paroxysmal, although a few were sustained. While most of the affected crewmembers were asymptomatic, those slated for long-duration space flight underwent radiofrequency ablation treatment to prevent further episodes of the arrhythmia. The summit was convened to solicit expert opinion on screening, diagnosis, and treatment options, to identify gaps in knowledge, and to propose relevant research initiatives. Summit Meeting Objectives: The Atrial Arrhythmia Summit brought together a panel of six cardiologists, including nationally and internationally renowned leaders in cardiac electrophysiology, exercise physiology, and space flight cardiovascular physiology. The primary objectives of the summit discussions were to evaluate cases of atrial arrhythmia in the astronaut population, to understand the factors that may predispose an individual to this condition, to understand NASA s current capabilities for screening, diagnosis, and treatment, to discuss the risks associated with treatment of crewmembers assigned to long-duration missions or extravehicular activities, and to discuss recommendations for prevention or management of future cases. Summary of Recommendations: The summit panel s recommendations were grouped into seven categories: Epidemiology, Screening, Standards and Selection, Treatment of Atrial Fibrillation Manifesting Preflight, Atrial Fibrillation during Flight, Prevention of Atrial Fibrillation, and Future Researc

    Exploration Medical Capability - Technology Watch

    Get PDF
    The objectives of the Technology Watch process are to identify emerging, high-impact technologies that augment current ExMC development efforts, and to work with academia, industry, and other government agencies to accelerate the development of medical care and research capabilities for the mitigation of potential health issues that could occur during space exploration missions. The establishment of collaborations with these entities is beneficial to technology development, assessment and/or insertion. Such collaborations also further NASA s goal to provide a safe and healthy environment for human exploration. The Tech Watch project addresses requirements and capabilities identified by knowledge and technology gaps that are derived from a discrete set of medical conditions that are most likely to occur on exploration missions. These gaps are addressed through technology readiness level assessments, market surveys, collaborations and distributed innovation opportunities. Ultimately, these gaps need to be closed with respect to exploration missions, and may be achieved through technology development projects. Information management is a key aspect to this process where Tech Watch related meetings, research articles, collaborations and partnerships are tracked by the HRP s Exploration Medical Capabilities (ExMC) Element. In 2011, ExMC will be introducing the Tech Watch external website and evidence wiki that will provide access to ExMC technology and knowledge gaps, technology needs and requirements documents

    Medullary Sponge Kidney and Urinary Calculi Aeromedical Concerns

    Get PDF
    Medullary Sponge Kidney (MSK) is a benign disorder associated with renal stones in 60% of patients. Patients frequently have episodic painless hematuria but are otherwise asymptomatic unless renal calculi or infections complicate the disease. Nephrolithiasis is a relative, but frequently enforced, contraindication to space or other high performance flight. Two case reports of asymptomatic NASA flight crew with MSK and three cases of military aviators diagnosed with MSK are reviewed, all cases resulted in waiver and return to flight status after treatment and a vigorous follow up and prophylaxis protocol. MSK in aviation and space flight necessitates a highly case-by-case dependent evaluation and treatment process to rule out other potential confounding factors that might also contribute to stone formation and in order to re-qualify the aviator for flight duties

    Analyses of Magnetic Resonance Imaging of Cerebrospinal Fluid Dynamics Pre and Post Short and Long-Duration Space Flights

    Get PDF
    Preliminary results are based on analyses of data from 17 crewmembers. The initial analysis compares pre to post-flight changes in total cerebral blood flow (CBF) and craniospinal CSF flow volume. Total CBF is obtained by summation of the mean flow rates through the 4 blood vessels supplying the brain (right and left internal carotid and vertebral arteries). Volumetric flow rates were obtained using an automated lumen segmentation technique shown to have 3-4-fold improved reproducibility and accuracy over manual lumen segmentation (6). Two cohorts, 5 short-duration and 8 long-duration crewmembers, who were scanned within 3 to 8 days post landing were included (4 short-duration crewmembers with MRI scans occurring beyond 10 days post flight were excluded). The VIIP Clinical Practice Guideline (CPG) classification is being used initially as a measure for VIIP syndrome severity. Median CPG scores of the short and long-duration cohorts were similar, 2. Mean preflight total CBF for the short and long-duration cohorts were similar, 863+/-144 and 747+/-119 mL/min, respectively. Percentage CBF changes for all short duration crewmembers were 11% or lower, within the range of normal physiological fluctuations in healthy individuals. In contrast, in 4 of the 8 long-duration crewmembers, the change in CBF exceeded the range of normal physiological fluctuation. In 3 of the 4 subjects an increase in CBF was measured. Large pre to post-flight changes in the craniospinal CSF flow volume were found in 6 of the 8 long-duration crewmembers. Box-Whisker plots of the CPG and the percent CBF and CSF flow changes for the two cohorts are shown in Figure 4. Examples of CSF flow waveforms for a short and two long-duration (CPG 0 and 3) are shown in Figure 5. Changes in CBF and CSF flow dynamics larger than normal physiological fluctuations were observed in the long-duration crewmembers. Changes in CSF flow were more pronounced than changes in CBF. Decreased CSF flow dynamics were observed in a subject with VIIP signs. Study limitations include a slightly longer landing-to-MRI scan period for the short-duration cohort and limited sensitivity of the subjective discrete ordinal CPG scale. This limitation can be overcome by using imaging based parametric measures of VIIP severity such as globe deformation measures

    Atrial Arrhythmias in Astronauts. Summary of a NASA Summit

    Get PDF
    This slide presentation reviews the findings of a panel of heart experts brought together to study if atrial arrhythmias more prevalent in astronauts, and potential risk factors that may predispose astronauts to atrial arrhythmias. The objective of the panel was to solicit expert opinion on screening, diagnosis, and treatment options, identify gaps in knowledge, and propose relevant research initiatives. While Atrial Arrhythmias occur in approximately the same percents in astronauts as in the general population, they seem to occur at younger ages in astronauts. Several reasons for this predisposition were given: gender, hypertension, endurance training, and triggering events. Potential Space Flight-Related Risk factors that may play a role in precipitating lone atrial fibrillation were reviewed. There appears to be no evidence that any variable of the space flight environment increases the likelihood of developing atrial arrhythmias during space flight
    corecore