14,363 research outputs found

    High throughput powder diffraction: II Applications of clustering methods and multivariate data analysis

    Get PDF
    In high throughput crystallography is possible to accumulate over 1000 powder diffraction patterns on a series of related compounds, often polymorphs. We present a method that can analyse such data, automatically sort the patterns into related clusters or classes, characterise each cluster and identify any unusual samples containing, for example, unknown or unexpected polymorphs. Mixtures may be analysed quantitatively if a database of pure phases is available. A key component of the method is a set of visualisation tools based on dendrograms, cluster analysis, pie charts, principal component based score plots and metric multidimensional scaling. Applications are presented to pharmaceutical data, and inorganic compounds. The procedures have been incorporated into the PolySNAP commercial computer software

    Classification of Material Mixtures in Volume Data for Visualization and Modeling

    Get PDF
    Material classification is a key stop in creating computer graphics models and images from volume data, We present a new algorithm for identifying the distribution of different material types in volumetric datasets such as those produced with Magnetic Resonance Imaging (NMI) or Computed Tomography (CT). The algorithm assumes that voxels can contain more than one material, e.g. both muscle and fat; we wish to compute the relative proportion of each material in the voxels. Other classification methods have utilized Gaussian probability density functions to model the distribution of values within a dataset. These Gaussian basis functions work well for voxels with unmixed materials, but do not work well where the materials are mixed together. We extend this approach by deriving non-Gaussian "mixture" basis functions. We treat a voxel as a volume, not as a single point. We use the distribution of values within each voxel-sized volume to identify materials within the voxel using a probabilistic approach. The technique reduces the classification artifacts that occur along boundaries between materials. The technique is useful for making higher quality geometric models and renderings from volume data, and has the potential to make more accurate volume measurements. It also classifies noisy, low-resolution data well

    Partial-volume Bayesian classification of material mixtures in MR volume data using voxel histograms

    Get PDF
    The authors present a new algorithm for identifying the distribution of different material types in volumetric datasets such as those produced with magnetic resonance imaging (MRI) or computed tomography (CT). Because the authors allow for mixtures of materials and treat voxels as regions, their technique reduces errors that other classification techniques can create along boundaries between materials and is particularly useful for creating accurate geometric models and renderings from volume data. It also has the potential to make volume measurements more accurately and classifies noisy, low-resolution data well. There are two unusual aspects to the authors' approach. First, they assume that, due to partial-volume effects, or blurring, voxels can contain more than one material, e.g., both muscle and fat; the authors compute the relative proportion of each material in the voxels. Second, they incorporate information from neighboring voxels into the classification process by reconstructing a continuous function, ρ(x), from the samples and then looking at the distribution of values that ρ(x) takes on within the region of a voxel. This distribution of values is represented by a histogram taken over the region of the voxel; the mixture of materials that those values measure is identified within the voxel using a probabilistic Bayesian approach that matches the histogram by finding the mixture of materials within each voxel most likely to have created the histogram. The size of regions that the authors classify is chosen to match the sparing of the samples because the spacing is intrinsically related to the minimum feature size that the reconstructed continuous function can represent

    An investigation of pulsar searching techniques with the Fast Folding Algorithm

    Full text link
    Here we present an in-depth study of the behaviour of the Fast Folding Algorithm, an alternative pulsar searching technique to the Fast Fourier Transform. Weaknesses in the Fast Fourier Transform, including a susceptibility to red noise, leave it insensitive to pulsars with long rotational periods (P > 1 s). This sensitivity gap has the potential to bias our understanding of the period distribution of the pulsar population. The Fast Folding Algorithm, a time-domain based pulsar searching technique, has the potential to overcome some of these biases. Modern distributed-computing frameworks now allow for the application of this algorithm to all-sky blind pulsar surveys for the first time. However, many aspects of the behaviour of this search technique remain poorly understood, including its responsiveness to variations in pulse shape and the presence of red noise. Using a custom CPU-based implementation of the Fast Folding Algorithm, ffancy, we have conducted an in-depth study into the behaviour of the Fast Folding Algorithm in both an ideal, white noise regime as well as a trial on observational data from the HTRU-S Low Latitude pulsar survey, including a comparison to the behaviour of the Fast Fourier Transform. We are able to both confirm and expand upon earlier studies that demonstrate the ability of the Fast Folding Algorithm to outperform the Fast Fourier Transform under ideal white noise conditions, and demonstrate a significant improvement in sensitivity to long-period pulsars in real observational data through the use of the Fast Folding Algorithm.Comment: 19 pages, 15 figures, 3 table

    The stransverse mass, MT2, in special cases

    Full text link
    This document describes some special cases in which the stransverse mass, MT2, may be calculated by non-iterative algorithms. The most notable special case is that in which the visible particles and the hypothesised invisible particles are massless -- a situation relevant to its current usage in the Large Hadron Collider as a discovery variable, and a situation for which no analytic answer was previously known. We also derive an expression for MT2 in another set of new (though arguably less interesting) special cases in which the missing transverse momentum must point parallel or anti parallel to the visible momentum sum. In addition, we find new derivations for already known MT2 solutions in a manner that maintains manifest contralinear boost invariance throughout, providing new insights into old results. Along the way, we stumble across some unexpected results and make conjectures relating to geometric forms of M_eff and H_T and their relationship to MT2.Comment: 11 pages, no figures. v2 corrects minor typos. v3 corrects an incorrect statement in footnote 8 and inserts a missing term in eq (3.9). v4 and v5 correct minor typos spotted by reader

    Natural fermion mass hierarchy and mixings in family unification

    Full text link
    We present an SU(9) model of family unification with three light chiral families, and a natural hierarchy of charged fermion masses and mixings. The existence of singlet right handed neutrions with masses about two orders of magnitude smaller than the GUT scale, as needed to understand the light neutrinos masses via the see-saw mechanism, is compelling in our model.Comment: 7 pages, no figur

    Applications of radioisotopes to problems in solid state physics

    Get PDF

    Ocean Wilderness In Theory And Practice

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2012Wilderness preservation has been an important focus of resource conservation since the dwindling number of wild places was perceived by some as losing a valued part of our collective natural and cultural heritage. While wilderness preservation efforts have been almost entirely focused on the land, recently there has been growing interest in "ocean wilderness." However, implementation has been constrained by the lack of a common vision of how "wilderness" is applied to the ocean, and how such areas should be managed and preserved. The purpose of this work was to identify and evaluate potential definitions of ocean wilderness and the values and qualities such areas possess, and to determine how they might be effectively identified and managed to preserve their wilderness character. This research focused on articulating a robust definition for "wilderness waters," within the context of how wilderness is currently conceived and articulated in law and policy, as well as evaluating how such areas might be most appropriately identified and managed. Extensive inventories were conducted of existing ocean wilderness areas, focused on North America, to determine what currently exists, how these areas are managed, and how future ocean wilderness designations should be prioritized. A survey was conducted, targeting resource managers and scientists, to identify preferences and perceptions of ocean wilderness and its potential stewardship. The survey results suggested that coastal waters possessed considerable values and qualities of wilderness, particularly areas adjacent to existing designated wilderness, that certain human uses might be appropriately permitted, and that there was much support for expanding the area of coastal waters designated as wilderness. The research also suggested that the North American Arctic might offer many opportunities for preserving ocean wilderness, in close collaboration with the Indigenous communities in this region. A number of recommendations were offered including that priority should be given to evaluating and designating areas adjacent to designated coastal wilderness areas, that the existing legal and policy framework in North America can be effectively used to expand the "wilderness waters" system, and that more work needs to be done to build the constituencies of support essential to accomplish this task

    The Action of Sodium Thiosulphate Solutions on Certain Silver Salts

    Get PDF
    The following work was undertaken at the suggestion of Dr. W. S. Hendrixson, to whom I am indebted for advice and assistance in the work. The solvent action of the thiosulphates on the halides of silver has long been known, and the fact is almost daily turned to account in the laboratory, and though the reaction has been quantitatively studied to some extent, an examination of the literature shows that no very satisfactory theory of the nature of the reaction and the complexes formed in solution has been established
    corecore