6 research outputs found

    MELISSA: Laser ion source setup at CERN-MEDICIS facility. Blueprint

    Full text link
    The Resonance Ionization Laser Ion Source (RILIS) has become an essential feature of many radioactive ion beam facilities worldwide since it offers an unmatched combination of efficiency and selectivity in the production of ion beams of many different chemical elements. In 2019, the laser ion source setup MELISSA is going to be established at the CERN-MEDICIS facility, based on the experience of the workgroup LARISSA of the University Mainz and CERN ISOLDE RILIS team. The purpose is to enhance the capability of the radioactive ion beam supply for end users by optimizing the yield and the purity of the final product. In this article, the blueprint of the laser ion source, as well as the key aspects of its development and operation are presented. © 2019 Elsevier B.V.This research project has been supported by a Marie Skłodowska-Curie Innovative Training Network Fellowship of the European Commission's Horizon 2020 Programme under contract number 642889 MEDICIS-PROMED; by a Research and Innovation Programme of the European Commission's Horizon 2020 under contract number 654002 (ENSAR2-RESIST); by a grant from the French National Agency for Research called “Investissements d'Avenir”, Equipex Arronax-Plus no. ANR-11-EQPX-0004 and Labex IRON no. ANR-11-LABX-18-01; by FWO-Vlaanderen (Belgium), and by a KU Leuven START Grant; by the German Federal Ministry of Education and Research under the consecutive projects 05P12UMCIA and 05P15UMCIA

    First laser ions at the CERN-MEDICIS facility

    Get PDF
    The CERN-MEDICIS facility aims to produce emerging medical radionuclides for the theranostics approach in nuclear medicine with mass separation of ion beams. To enhance the radioisotope yield and purity of collected samples, the resonance ionization laser ion source MELISSA was constructed, and provided the first laser ions at the facility in 2019. Several operational tests were accomplished to investigate its performance in preparation for the upcoming production of terbium radioisotopes, which are of particular interest for medical applications. © 2020, The Author(s).KU LeuvenHorizon 2020: 642889 MEDICIS-PROMED05P12UMCIA, 05P15UMCIAOpen Access funding provided by Projekt DEAL. We would like to acknowledge the help and assistance from the whole MEDICIS collaboration; from CERN-ISOLDE Technical and Physical groups. This research project has been supported by a Marie Skłodowska-Curie Innovative Training Network Fellowship of the European Commission’s Horizon 2020 Programme under contract number 642889 MEDICIS-PROMED; by the German Federal Ministry of Education and Research under the consecutive projects 05P12UMCIA and 05P15UMCIA; by the Research Foundation Flanders FWO (Belgium) and by a KU Leuven START grant

    The LIEBE high-power target: Offline commissioning results and prospects for the production of 100^{100} Sn ISOL beams at HIE-ISOLDE

    No full text
    With the aim of increasing the primary beam intensity in the next generation Radioactive Ion Beam facilities, a major challenge is the production of targets capable of dissipating high beam power, particularly for molten targets. In that context, a direct molten loop target concept was proposed for short-lived isotopes for EURISOL. The circulation of molten metal enables the production of droplets enhancing the radioisotope diffusion. The concept also includes a heat exchanger ensuring thermal equilibrium under interaction with high proton beam power. A target prototype, named LIEBE, has been designed and assembled to validate this concept in the ISOLDE operation environment. The project is now in an offline commissioning phase in order to confirm the design specifications before tests under proton beam. Successful outcome of the project can lead to new beams with great interest in nuclear structure and physics studies. In particular, investigations fall short in the region around the double magic isotope 100Sn at ISOL facilities because of the lack of a suitable primary beam driver and target-ion source unit for any of the present-day facilities. Achievable 100Sn beam intensities and purities are calculated with ABRABLA and FLUKA considering the use of a high power molten lanthanum target combined with molecular tin formation and a FEBIAD ion source. The presented option takes into consideration upgrade scenarios of the primary beam at ISOLDE, going from a 1.4  GeV–2 μA to a 2 GeV–4 μA pulsed proton beam

    Production of innovative radionuclides for medical applications at the CERN-MEDICIS facility

    No full text
    Since its commissioning in December 2017, the CERN-MEDICIS facility has been providing non-conventional radionuclides for research in nuclear medicine. Benefitting from decades of experience in the production of radioactive ion beams and in the mass separation process from the ISOLDE facility at CERN, MEDICIS quickly became a worldwide key player in the supply of novel medical isotopes dedicated to research in the fields of cancer imaging, diagnostics, and radiation therapy. After a few years of operation, successful collections have been performed on a large panel of radionuclides such as 128Ba, 149,152,155Tb, 153Sm, 165,167Tm, 169Er, 175Yb, 191Pt, and 225,227Ac. Several milestones have been achieved on the output of the facility, such as the collection of 0.5 GBq of 175Yb, and a total separation efficiency higher than 50% reached for 167Tm in 2020. These collections led to notable recent in-vitro and preclinical results in targeted radionuclide therapy achieved with high molar activity 175Yb and 153Sm products. Constant developments are ongoing, such as innovative target designs, molecular formation to improve the release of some specific isotopes, laser development in the dedicated MELISSA laboratory, study of new implantation foil materials, and post-collection radiochemistry

    CERN-MEDICIS: A Unique Facility for the Production of Non-Conventional Radionuclides for the Medical Research

    No full text
    International audienceThe MEDICIS facility is a unique facility located at CERN dedicated to the production of non-conventional radionuclides for research and development in imaging, diagnostics and radiation therapy. It exploits in a Class A work sector, a dedicated isotope separator beam line, a target irradiation station at the 1.4 GeV Proton Synchroton Booster (PSB) and receives activated targets from external institutes during CERN Long Shut-Downs. The target is heated up at high temperatures to allow for the diffusion and effusion of the atoms out of the target that are subsequently ionized. The ions are accelerated and sent through an off-line mass separator. The radionuclide of interest is extracted through mass separation and implanted into a thin metallic collection foil. After collection, the batch is prepared to be dispatched to a research center. In the near-future, the radiochemistry process will also be performed in MEDICIS. Since its commissioning in December 2017, the facility has provided novel radionuclides such as Tb-149, Tb-155, Tm-165, Er-169 and Yb-175 with high specific activity, some for the first time, to European research institutes part of the collaboration. (JACoW
    corecore