18 research outputs found

    In vitro antiviral activity of SCH446211 (SCH6), a novel inhibitor of the hepatitis C virus NS3 serine protease

    Get PDF
    Background: Current hepatitis C virus (HCV) therapies may cure ∼60% of infections. They are often contraindicated or poorly tolerated, underscoring the need for safer and more effective drugs. A novel, α-ketoamide-derived, substrate-based inhibitor of the HCV serine protease (SCH446211) was developed. Compared with earlier reported inhibitors of similar chemical class, it has a P1′-P2′ extension which provides extended interaction with the protease active site. The aim of this study was to evaluate the in vitro antiviral activity of SCH446211. Methods: Binding constant of SCH446211 to HCV NS3 protease was measured with the chromogenic substrate in vitro cleavage assay. Cell-based activity of SCH446211 was evaluated in replicon cells, which are Huh-7 hepatoma cells stably transfected with a subgenomic HCV RNA as reported previously. After 72 h of incubation with SCH446211, viral transcription and protein expression were measured by real-time RT-PCR (TaqMan), quantitative in situ hybridization, immunoblot and indirect immunofluorescence. Results: The binding constant of SCH446211 to HCV NS3 protease was 3.8 ± 0.4 nM. HCV replication and protein expression were inhibited by SCH446211 in replicon cells as consistently shown by four techniques. In particular, based on quantitative real-time RT-PCR measurements, the IC50 and IC90 of SCH446211 were estimated to be 40 ± 20 and 100 ± 20 nM (n = 17), respectively. Long-term culture of replicon cells with SCH446211 reduced replicon RNA to <0.1 copy per cell. SCH446211 did not show cellular toxicity at concentrations up to 50 μM. Conclusions: SCH446211 is a potent inhibitor of HCV protease in vitro. Its extended interaction with the HCV NS3 protease active site is associated with potent in vitro antiviral activity. This observation is potentially a useful guide for development of future potent inhibitors against HCV NS3 proteas

    Anti-Human Immunodeficiency Virus Interactions of SCH-C (SCH 351125), a CCR5 Antagonist, with Other Antiretroviral Agents In Vitro

    No full text
    SCH-C (SCH 351125) is a small-molecule antagonist of the human immunodeficiency virus type 1(HIV-1) coreceptor CCR5. It has in vitro activity against R5 viruses with 50% inhibitory concentrations ranging from 1.0 to 30.9 nM. We have studied anti-HIV-1 interactions of SCH-C with other antiretroviral agents in vitro. Synergistic interactions were seen with nucleoside reverse transcriptase inhibitors (zidovudine and lamivudine), nonnucleoside reverse transcriptase inhibitors (efavirenz), and protease inhibitors (indinavir) at all inhibitory concentrations evaluated. We have also studied antiviral interactions between the HIV-1 fusion inhibitor T-20 and SCH-C against a panel of R5 HIV-1 isolates. We found synergistic interactions against all the viruses tested, some of which harbored resistance mutations to reverse transcriptase and protease inhibitors. Anti-HIV-1 synergy was also observed between SCH-C and another R5 virus inhibitor, aminooxypentane-RANTES. These findings suggest that SCH-C may be a useful anti-HIV drug in combination regimens and that a combination of chemokine coreceptor/fusion inhibitors may be useful in the treatment of multidrug-resistant viruses

    Hepatitis C Virus Internal Ribosome Entry Site (IRES) Stem Loop IIId Contains a Phylogenetically Conserved GGG Triplet Essential for Translation and IRES Folding

    No full text
    The hepatitis C virus (HCV) internal ribosome entry site (IRES) is a highly structured RNA element that directs cap-independent translation of the viral polyprotein. Morpholino antisense oligonucleotides directed towards stem loop IIId drastically reduced HCV IRES activity. Mutagenesis studies of this region showed that the GGG triplet (nucleotides 266 through 268) of the hexanucleotide apical loop of stem loop IIId is essential for IRES activity both in vitro and in vivo. Sequence comparison showed that apical loop nucleotides (UUGGGU) were absolutely conserved across HCV genotypes and the GGG triplet was strongly conserved among related Flavivirus and Pestivirus nontranslated regions. Chimeric IRES elements with IIId derived from GB virus B (GBV-B) in the context of the HCV IRES possess translational activity. Mutations within the IIId stem loop that abolish IRES activity also affect the RNA structure in RNase T(1)-probing studies, demonstrating the importance of correct RNA folding to IRES function
    corecore