11,385 research outputs found
Low-temperature transport through a quantum dot between two superconductor leads
We consider a quantum dot coupled to two BCS superconductors with same gap
energies . The transport properties are investigated by means of
infinite- noncrossing approximation. In equilibrium density of states, Kondo
effect shows up as two sharp peaks around the gap bounds. Application of a
finite voltage bias leads these peaks to split, leaving suppressed peaks near
the edges of energy gap of each lead. The clearest signatures of the Kondo
effect in transport are three peaks in the nonlinear differential conductance:
one around zero bias, another two at biases . This result is
consistent with recent experiment. We also predict that with decreasing
temperature, the differential conductances at biases anomalously
increase, while the linear conductance descends.Comment: replaced with revised versio
Critical currents in Josephson junctions with macroscopic defects
The critical currents in Josephson junctions of conventional superconductors
with macroscopic defects are calculated for different defect critical current
densities as a function of the magnetic field. We also study the evolution of
the different modes with the defect position, at zero external field. We study
the stability of the solutions and derive simple arguments, that could help the
defect characterization. In most cases a reentrant behavior is seen, where both
a maximum and a minimum current exist.Comment: 17 pages with 16 figures, submitted to Supercond. Sci. Techno
Investigation of resonant and transient phenomena in Josephson junction flux qubits
We present an analytical and computational study of resonances and transient
responses in a classical Josephson junction system. A theoretical basis for
resonances in a superconducting loop with three junctions is presented,
outlining both the direct relationship between the dynamics of single- and
multi-junction systems, and the direct relationships between observations of
the classical counterparts to Rabi oscillations, Ramsey fringes, and spin echo
oscillations in this class of systems. We show simulations data along with
analytical analyses of the classical model, and the results are related to
previously reported experiments conducted on three junction loops. We further
investigate the effect of off-resonant microwave perturbations to, e.g., the
Rabi-type response of the Josephson system, and we relate this response back to
the nonlinear and multi-valued resonance behavior previously reported for a
single Josephson junction. The close relationships between single and
multi-junction behavior demonstrates the underlying dynamical mechanism for a
whole class of classical counterparts to expected quantum mechanical
observations in a variety of systems; namely the resonant and transient
behavior of a particle in an anharmonic potential well with subsequent escape.Comment: 11 pages, seven figure
Post-test simulations for the NACIE-UP benchmark by STH codes
This paper illustrates the results obtained in the last phase of the NACIE-UP benchmark activity foreseen inside the EU SESAME Project. The purpose of this research activity, performed by system thermalâhydraulic (STH) codes, is finalized to the improvement, development and validation of existing STH codes for Heavy Liquid Metal (HLM) systems. All the participants improved their modelling of the NACIE-UP facility, respect to the initial blind simulation phase, adopting the actual experimental boundary conditions and reducing as much as possible sources of uncertainty in their numerical model. Four different STH codes were employed by the participants to the benchmark to model the NACIE-UP facility, namely: CATHARE for ENEA, ATHLET for GRS, RELAP5-3D© for the âSapienzaâ University of Rome and RELAP5/Mod3.3(modified) for the University of Pisa. Three reference tests foreseen in the NACIE-UP benchmark and carried out at ENEA Brasimone Research Centre were analysed from four participants. The data from the post-test analyses, performed independently by the participant using different STH codes, were compared together and with the available experimental results and critically discussed
Nonlinear kT factorization for Forward Dijets in DIS off Nuclei in the Saturation Regime
We develop the QCD description of the breakup of photons into forward dijets
in small-x deep inelastic scattering off nuclei in the saturation regime. Based
on the color dipole approach, we derive a multiple scattering expansion for
intranuclear distortions of the jet-jet transverse momentum spectrum. A special
attention is paid to the non-Abelian aspects of the propagation of color
dipoles in a nuclear medium. We report a nonlinear -factorization
formula for the breakup of photons into dijets in terms of the collective
Weizs\"acker-Williams (WW) glue of nuclei as defined in ref.
\cite{Saturation,NSSdijet}. For hard dijets with the transverse momenta above
the saturation scale the azimuthal decorrelation (acoplanarity) momentum is of
the order of the nuclear saturation momentum QA. For minijets with the
transverse momentum below the saturation scale the nonlinear kT-factorization
predicts a complete disappearance of the jet-jet correlation. We comment on a
possible relevance of the nuclear decorrelation of jets to the experimental
data from the STAR-RHIC Collaboration.Comment: 40 pages, 7 figure
DMRG analysis of the SDW-CDW crossover region in the 1D half-filled Hubbard-Holstein model
In order to clarify the physics of the crossover from a spin-density-wave
(SDW) Mott insulator to a charge-density-wave (CDW) Peierls insulator in
one-dimensional (1D) systems, we investigate the Hubbard-Holstein Hamiltonian
at half filling within a density matrix renormalisation group (DMRG) approach.
Determining the spin and charge correlation exponents, the momentum
distribution function, and various excitation gaps, we confirm that an
intervening metallic phase expands the SDW-CDW transition in the weak-coupling
regime.Comment: revised versio
Magnetic interference patterns in long disordered Josephson junctions
We study a diffusive superconductor - normal metal - superconductor (SNS)
junction in an external magnetic field. In the limit of a long junction, we
find that the form of the dependence of the Josephson current on the field and
on the length of the junction depends on the ratio between the junction width
and the length associated with the magnetic field. A certain critical ratio
between these two length scales separates two different regimes. In narrow
junctions, the critical current exhibits a pure decay as a function of the
junction length or of the magnetic field. In wide junctions, the critical
current exhibits damped oscillations as a function of the same parameters. This
damped oscillating behavior differs from the Fraunhofer pattern typical for
short or tunnel junctions. In wide and long junctions, superconducting pair
correlations and supercurrent are localized along the edges of the junction.Comment: 9 pages, 4 figures, minor modifications corresponding to the
published versio
New Experiments for Spontaneous Vortex Formation in Josephson Tunnel Junctions
It has been argued by Zurek and Kibble that the likelihood of producing
defects in a continuous phase transition depends in a characteristic way on the
quench rate. In this paper we discuss an improved experiment for measuring the
Zurek-Kibble scaling exponent for the production of fluxons in
annular symmetric Josephson Tunnel Junctions. We find .
Further, we report accurate measurements of the junction gap voltage
temperature dependence which allow for precise monitoring of the fast
temperature variations during the quench.Comment: 12 pages, 5 figures, submitted to Phys. Rev.
Anomalous transport in biased ac-driven Josephson junctions: Negative conductances
We investigate classical anomalous electrical transport in a driven,
resistively and capacitively shunted Josephson junction device. Novel transport
phenomena are identified in chaotic regimes when the junction is subjected to
both, a time periodic (ac) and a constant, biasing (dc) current. The dependence
of the voltage across the junction on the dc-current exhibits a rich diversity
of anomalous transport characteristics: In particular, depending on the chosen
parameter regime we can identify so termed absolute negative conductance around
zero dc-bias, the occurrence of negative differential conductance and, after
crossing a zero conductance, the emergence of a negative nonlinear conductance
in the non-equilibrium response regime remote from zero dc-bias.Comment: 7 pages, 5 figure
âIt stays with youâ: multiple evocative representations of dance and future possibilities for studies in sport and physical cultures
This article considers the integration of arts-based representations via poetic narratives together with artistic representation on dancing embodiment so as to continue an engagement with debates regarding multiple forms/representations. Like poetry, visual images are unique and can evoke particular kinds of emotional and visceral responses, meaning that alternative representational forms can resonate in different and powerful ways. In the article, we draw on grandparent-grandchild interactions, narrative poetry, and artistic representations of dance in order to illustrate how arts-based methods might synergise to offer new ways of âknowingâ and âseeingâ. The expansion of the visual arts into interdisciplinary methodological innovations is a relatively new, and sometimes contentious approach, in studies of sport and exercise. We raise concerns regarding the future for more arts-based research in the light of an ever-changing landscape of a neoliberal university culture that demands high productivity in reductionist terms of what counts as âoutputâ, often within very restricted time-frames. Heeding feminist calls for âslow academiesâ that attempt to âchangeâ time collectively, and challenge the demands of a fast-paced audit culture, we consider why it is worth enabling creative and arts-based methods to continue to develop and flourish in studies of sport, exercise and health, despite the mounting pressures to âperformâ
- âŠ