11,172 research outputs found

    Low-temperature transport through a quantum dot between two superconductor leads

    Full text link
    We consider a quantum dot coupled to two BCS superconductors with same gap energies Δ\Delta. The transport properties are investigated by means of infinite-UU noncrossing approximation. In equilibrium density of states, Kondo effect shows up as two sharp peaks around the gap bounds. Application of a finite voltage bias leads these peaks to split, leaving suppressed peaks near the edges of energy gap of each lead. The clearest signatures of the Kondo effect in transport are three peaks in the nonlinear differential conductance: one around zero bias, another two at biases ±2Δ\pm 2\Delta. This result is consistent with recent experiment. We also predict that with decreasing temperature, the differential conductances at biases ±2Δ\pm 2\Delta anomalously increase, while the linear conductance descends.Comment: replaced with revised versio

    Critical currents in Josephson junctions with macroscopic defects

    Full text link
    The critical currents in Josephson junctions of conventional superconductors with macroscopic defects are calculated for different defect critical current densities as a function of the magnetic field. We also study the evolution of the different modes with the defect position, at zero external field. We study the stability of the solutions and derive simple arguments, that could help the defect characterization. In most cases a reentrant behavior is seen, where both a maximum and a minimum current exist.Comment: 17 pages with 16 figures, submitted to Supercond. Sci. Techno

    Post-test simulations for the NACIE-UP benchmark by STH codes

    Get PDF
    This paper illustrates the results obtained in the last phase of the NACIE-UP benchmark activity foreseen inside the EU SESAME Project. The purpose of this research activity, performed by system thermal–hydraulic (STH) codes, is finalized to the improvement, development and validation of existing STH codes for Heavy Liquid Metal (HLM) systems. All the participants improved their modelling of the NACIE-UP facility, respect to the initial blind simulation phase, adopting the actual experimental boundary conditions and reducing as much as possible sources of uncertainty in their numerical model. Four different STH codes were employed by the participants to the benchmark to model the NACIE-UP facility, namely: CATHARE for ENEA, ATHLET for GRS, RELAP5-3D© for the “Sapienza” University of Rome and RELAP5/Mod3.3(modified) for the University of Pisa. Three reference tests foreseen in the NACIE-UP benchmark and carried out at ENEA Brasimone Research Centre were analysed from four participants. The data from the post-test analyses, performed independently by the participant using different STH codes, were compared together and with the available experimental results and critically discussed

    Investigation of resonant and transient phenomena in Josephson junction flux qubits

    Full text link
    We present an analytical and computational study of resonances and transient responses in a classical Josephson junction system. A theoretical basis for resonances in a superconducting loop with three junctions is presented, outlining both the direct relationship between the dynamics of single- and multi-junction systems, and the direct relationships between observations of the classical counterparts to Rabi oscillations, Ramsey fringes, and spin echo oscillations in this class of systems. We show simulations data along with analytical analyses of the classical model, and the results are related to previously reported experiments conducted on three junction loops. We further investigate the effect of off-resonant microwave perturbations to, e.g., the Rabi-type response of the Josephson system, and we relate this response back to the nonlinear and multi-valued resonance behavior previously reported for a single Josephson junction. The close relationships between single and multi-junction behavior demonstrates the underlying dynamical mechanism for a whole class of classical counterparts to expected quantum mechanical observations in a variety of systems; namely the resonant and transient behavior of a particle in an anharmonic potential well with subsequent escape.Comment: 11 pages, seven figure

    Nonlinear kT factorization for Forward Dijets in DIS off Nuclei in the Saturation Regime

    Full text link
    We develop the QCD description of the breakup of photons into forward dijets in small-x deep inelastic scattering off nuclei in the saturation regime. Based on the color dipole approach, we derive a multiple scattering expansion for intranuclear distortions of the jet-jet transverse momentum spectrum. A special attention is paid to the non-Abelian aspects of the propagation of color dipoles in a nuclear medium. We report a nonlinear kk_{\perp}-factorization formula for the breakup of photons into dijets in terms of the collective Weizs\"acker-Williams (WW) glue of nuclei as defined in ref. \cite{Saturation,NSSdijet}. For hard dijets with the transverse momenta above the saturation scale the azimuthal decorrelation (acoplanarity) momentum is of the order of the nuclear saturation momentum QA. For minijets with the transverse momentum below the saturation scale the nonlinear kT-factorization predicts a complete disappearance of the jet-jet correlation. We comment on a possible relevance of the nuclear decorrelation of jets to the experimental data from the STAR-RHIC Collaboration.Comment: 40 pages, 7 figure

    DMRG analysis of the SDW-CDW crossover region in the 1D half-filled Hubbard-Holstein model

    Full text link
    In order to clarify the physics of the crossover from a spin-density-wave (SDW) Mott insulator to a charge-density-wave (CDW) Peierls insulator in one-dimensional (1D) systems, we investigate the Hubbard-Holstein Hamiltonian at half filling within a density matrix renormalisation group (DMRG) approach. Determining the spin and charge correlation exponents, the momentum distribution function, and various excitation gaps, we confirm that an intervening metallic phase expands the SDW-CDW transition in the weak-coupling regime.Comment: revised versio

    Magnetic interference patterns in long disordered Josephson junctions

    Full text link
    We study a diffusive superconductor - normal metal - superconductor (SNS) junction in an external magnetic field. In the limit of a long junction, we find that the form of the dependence of the Josephson current on the field and on the length of the junction depends on the ratio between the junction width and the length associated with the magnetic field. A certain critical ratio between these two length scales separates two different regimes. In narrow junctions, the critical current exhibits a pure decay as a function of the junction length or of the magnetic field. In wide junctions, the critical current exhibits damped oscillations as a function of the same parameters. This damped oscillating behavior differs from the Fraunhofer pattern typical for short or tunnel junctions. In wide and long junctions, superconducting pair correlations and supercurrent are localized along the edges of the junction.Comment: 9 pages, 4 figures, minor modifications corresponding to the published versio

    New Experiments for Spontaneous Vortex Formation in Josephson Tunnel Junctions

    Get PDF
    It has been argued by Zurek and Kibble that the likelihood of producing defects in a continuous phase transition depends in a characteristic way on the quench rate. In this paper we discuss an improved experiment for measuring the Zurek-Kibble scaling exponent σ\sigma for the production of fluxons in annular symmetric Josephson Tunnel Junctions. We find σ0.5\sigma \simeq 0.5. Further, we report accurate measurements of the junction gap voltage temperature dependence which allow for precise monitoring of the fast temperature variations during the quench.Comment: 12 pages, 5 figures, submitted to Phys. Rev.

    Anomalous transport in biased ac-driven Josephson junctions: Negative conductances

    Get PDF
    We investigate classical anomalous electrical transport in a driven, resistively and capacitively shunted Josephson junction device. Novel transport phenomena are identified in chaotic regimes when the junction is subjected to both, a time periodic (ac) and a constant, biasing (dc) current. The dependence of the voltage across the junction on the dc-current exhibits a rich diversity of anomalous transport characteristics: In particular, depending on the chosen parameter regime we can identify so termed absolute negative conductance around zero dc-bias, the occurrence of negative differential conductance and, after crossing a zero conductance, the emergence of a negative nonlinear conductance in the non-equilibrium response regime remote from zero dc-bias.Comment: 7 pages, 5 figure

    ‘It stays with you’: multiple evocative representations of dance and future possibilities for studies in sport and physical cultures

    Get PDF
    This article considers the integration of arts-based representations via poetic narratives together with artistic representation on dancing embodiment so as to continue an engagement with debates regarding multiple forms/representations. Like poetry, visual images are unique and can evoke particular kinds of emotional and visceral responses, meaning that alternative representational forms can resonate in different and powerful ways. In the article, we draw on grandparent-grandchild interactions, narrative poetry, and artistic representations of dance in order to illustrate how arts-based methods might synergise to offer new ways of ‘knowing’ and ‘seeing’. The expansion of the visual arts into interdisciplinary methodological innovations is a relatively new, and sometimes contentious approach, in studies of sport and exercise. We raise concerns regarding the future for more arts-based research in the light of an ever-changing landscape of a neoliberal university culture that demands high productivity in reductionist terms of what counts as ‘output’, often within very restricted time-frames. Heeding feminist calls for ‘slow academies’ that attempt to ‘change’ time collectively, and challenge the demands of a fast-paced audit culture, we consider why it is worth enabling creative and arts-based methods to continue to develop and flourish in studies of sport, exercise and health, despite the mounting pressures to ‘perform’
    corecore