12,108 research outputs found

    Synchronization of One Dimensional Array of Point Josephson Junctions Coupled to a Common Load

    Full text link
    We study the synchronization in a one dimensional array of point Josephson junctions coupled to a common capacitor, which establishes a long-range interaction between junctions and synchronizes them. The stability diagram of synchronization in a noise-free system is obtained. The current when junctions transform from resistive state into superconducting state, is then calculated and its dependence on the shunt parameters and the dissipation of junctions is revealed. In the presence of thermal noise, the synchronized oscillations are destroyed at a critical temperature and the system undergoes a continuous phase transition of desynchronization. A possible stability diagram of the synchronized oscillations with respect to thermal noise, current, dissipations and shunt capacitance is then constructed. Finally we investigate the dynamic relaxation from random oscillations into synchronized state. The relaxation time increases with the system size and temperature, but is reduced by the shunt capacitor.Comment: 11.2 pages, 14 figure

    Dispersionless motion in a driven periodic potential

    Full text link
    Recently, dispersionless (coherent) motion of (noninteracting) massive Brownian particles, at intermediate time scales, was reported in a sinusoidal potential with a constant tilt. The coherent motion persists for a finite length of time before the motion becomes diffusive. We show that such coherent motion can be obtained repeatedly by applying an external zero-mean square-wave drive of appropriate period and amplitude, instead of a constant tilt. Thus, the cumulative duration of coherent motion of particles is prolonged. Moreover, by taking an appropriate combination of periods of the external field, one can postpone the beginning of the coherent motion and can even have coherent motion at a lower value of position dispersion than in the constant tilt case.Comment: 4 pages, 4 figure

    Charged currents, color dipoles and xF_3 at small x

    Full text link
    We develop the light-cone color dipole description of highly asymmetric diffractive interactions of left-handed and right-handed electroweak bosons. We identify the origin and estimate the strength of the left-right asymmetry effect in terms of the light-cone wave functions. We report an evaluation of the small-x neutrino-nucleon DIS structure functions xF_3 and 2xF_1 and present comparison with experimental data.Comment: 11 pages, 3 figures, misprints correcte

    Zurek-Kibble Mechanism for the Spontaneous Vortex Formation in Nb−Al/Alox/NbNb-Al/Al_{ox}/Nb Josephson Tunnel Junctions: New Theory and Experiment

    Get PDF
    New scaling behavior has been both predicted and observed in the spontaneous production of fluxons in quenched Nb−Al/Alox/NbNb-Al/Al_{ox}/Nb annular Josephson tunnel junctions as a function of the quench time, τQ\tau_{Q}. The probability f1f_{1} to trap a single defect during the N-S phase transition clearly follows an allometric dependence on τQ\tau_{Q} with a scaling exponent σ=0.5\sigma = 0.5, as predicted from the Zurek-Kibble mechanism for {\it realistic} JTJs formed by strongly coupled superconductors. This definitive experiment replaces one reported by us earlier, in which an idealised model was used that predicted σ=0.25\sigma = 0.25, commensurate with the then much poorer data. Our experiment remains the only condensed matter experiment to date to have measured a scaling exponent with any reliability.Comment: Four pages, one figur

    Investigation of resonant and transient phenomena in Josephson junction flux qubits

    Full text link
    We present an analytical and computational study of resonances and transient responses in a classical Josephson junction system. A theoretical basis for resonances in a superconducting loop with three junctions is presented, outlining both the direct relationship between the dynamics of single- and multi-junction systems, and the direct relationships between observations of the classical counterparts to Rabi oscillations, Ramsey fringes, and spin echo oscillations in this class of systems. We show simulations data along with analytical analyses of the classical model, and the results are related to previously reported experiments conducted on three junction loops. We further investigate the effect of off-resonant microwave perturbations to, e.g., the Rabi-type response of the Josephson system, and we relate this response back to the nonlinear and multi-valued resonance behavior previously reported for a single Josephson junction. The close relationships between single and multi-junction behavior demonstrates the underlying dynamical mechanism for a whole class of classical counterparts to expected quantum mechanical observations in a variety of systems; namely the resonant and transient behavior of a particle in an anharmonic potential well with subsequent escape.Comment: 11 pages, seven figure

    Anomalous transport in biased ac-driven Josephson junctions: Negative conductances

    Get PDF
    We investigate classical anomalous electrical transport in a driven, resistively and capacitively shunted Josephson junction device. Novel transport phenomena are identified in chaotic regimes when the junction is subjected to both, a time periodic (ac) and a constant, biasing (dc) current. The dependence of the voltage across the junction on the dc-current exhibits a rich diversity of anomalous transport characteristics: In particular, depending on the chosen parameter regime we can identify so termed absolute negative conductance around zero dc-bias, the occurrence of negative differential conductance and, after crossing a zero conductance, the emergence of a negative nonlinear conductance in the non-equilibrium response regime remote from zero dc-bias.Comment: 7 pages, 5 figure

    Diffusion Enhancement in a Periodic Potential under High-Frequency Space-Dependent Forcing

    Get PDF
    We study the long-time behavior of underdamped Brownian particle moving through a viscous medium and in a systematic potential, when it is subjected to a space-dependent high-frequency periodic force. When the frequency is very large, much larger than all other relevant system-frequencies, there is a Kapitsa time-window wherein the effect of frequency dependent forcing can be replaced by a static effective potential. Our new analysis includes the case when the forcing, in addition to being frequency-dependent, is space-dependent as well. The results of the Kapitsa analysis then lead to additional contributions to the effective potential. These are applied to the numerical calculation of the diffusion coefficient (D) for a Brownian particle moving in a periodic potential. Presented are numerical results, which are in excellent agreement with theoretical predictions and which indicate a significant enhancement of D due to the space-dependent forcing terms. In addition we study the transport property (current) of underdamped Brownian particles in a ratchet potential.Comment: RevTex 6 pages, 5 figure

    Spontaneous Fluxon Production in Annular Josephson Tunnel Junctions in the Presence of a Magnetic Field

    Get PDF
    We report on the spontaneous production of fluxons in the presence of a symmetry-breaking magnetic field for annular Josephson tunnel junctions during a thermal quench. The dependence on field intensity BB of the probability f1ˉ\bar{f_1} to trap a single defect during the N-S phase transition drastically depends on the sample circumferences. We show that the data can be understood in the framework of the Kibble-Zurek picture of spontaneous defect formation controlled by causal bounds.Comment: Submitted to Phys. Rev. B with 5 figures on Nov. 15, 200

    New Experiments for Spontaneous Vortex Formation in Josephson Tunnel Junctions

    Get PDF
    It has been argued by Zurek and Kibble that the likelihood of producing defects in a continuous phase transition depends in a characteristic way on the quench rate. In this paper we discuss an improved experiment for measuring the Zurek-Kibble scaling exponent σ\sigma for the production of fluxons in annular symmetric Josephson Tunnel Junctions. We find σ≃0.5\sigma \simeq 0.5. Further, we report accurate measurements of the junction gap voltage temperature dependence which allow for precise monitoring of the fast temperature variations during the quench.Comment: 12 pages, 5 figures, submitted to Phys. Rev.

    DMRG analysis of the SDW-CDW crossover region in the 1D half-filled Hubbard-Holstein model

    Full text link
    In order to clarify the physics of the crossover from a spin-density-wave (SDW) Mott insulator to a charge-density-wave (CDW) Peierls insulator in one-dimensional (1D) systems, we investigate the Hubbard-Holstein Hamiltonian at half filling within a density matrix renormalisation group (DMRG) approach. Determining the spin and charge correlation exponents, the momentum distribution function, and various excitation gaps, we confirm that an intervening metallic phase expands the SDW-CDW transition in the weak-coupling regime.Comment: revised versio
    • …
    corecore