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We investigate classical anomalous electrical transport in a driven, resistively, and capacitively shunted
Josephson junction device. Intriguing transport phenomena are identified in chaotic regimes when the junction
is subjected to both a time-periodic �ac� and a constant biasing �dc� current. The dependence of the voltage
across the junction on the dc exhibits a rich diversity of anomalous transport characteristics. In particular,
depending on the chosen parameter regime, we can identify the so termed absolute negative conductance
around zero dc bias, the occurrence of negative differential conductance, and, after crossing a zero conduc-
tance, the emergence of a negative nonlinear conductance in the nonequilibrium response regime remote from
zero dc bias.
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I. INTRODUCTION

The Josephson junction system constitutes a beautiful
paradigm of a nonlinear system exhibiting most interesting
classical and quantum phenomena.1 This system, in addition,
offers a rich spectrum of beneficial applications. For ex-
ample, a prominent application of a Josephson junction setup
relates to the definition of the voltage standard. Moreover,
practical devices based on the characteristics of a Josephson
junction are instrumental for high speed circuits: they can be
designed to switch voltage within a few picoseconds. Their
typical attribute of a low power dissipation proves them ser-
viceable in high-density computer circuits, where the resis-
tive heating limits the applicability of conventional switches.
More recent applications refer to quantum computing de-
vices where Josephson junction setups can store single units
of information �qubits�2 or, with appropriately engineered
coupling among various units, they serve as an architecture
for the processing of quantum information.3 Yet, there still
remain new phenomena to be uncovered for this system,
which in turn carry the potential for new applications. Of
special interest are novel transport phenomena in the pres-
ence of external ac and dc forcing. In this context, the phe-
nomenon of absolute negative conductance �ANC� plays a
particularly intriguing role. Here, ANC means that the sys-
tem’s response is opposite to a small external bias. In the
present context, a small, say, positive dc generates a negative
voltage across the junction. This constitutes no contradiction
to thermodynamic laws because it occurs in the presence of
simultaneously acting nonequilibrium perturbation, the ac
drive. This phenomenon is known to emerge within a quan-
tum mechanical setting in the presence of tunneling pro-
cesses; remarkably, however, it has also been demonstrated
on a classical level in stylized, spatially extended ratchetlike
systems without reflection symmetry.4–7

The phenomenon of ANC has already been experimen-
tally observed in p-modulation-doped GaAs quantum wells8

and also in semiconductor superlattices, occurring therein as
a genuine quantum phenomenon.9 Interestingly enough, this
very ANC phenomenon has been reported first in a recent
work by us in Ref. 10 for an ac- and dc-driven Josephson

junction. Notably, however, the study in Ref. 10 identifies
this phenomenon within its classical operation regime for an
inherent reflection-symmetric system. In extending our pre-
vious study in Ref. 10, we �i� provide further details, �ii�
explore even wider regimes in parameter space, and �iii�
identify additional unforeseen response regimes. In contrast
to a related study,11 where ANC is investigated in an under-
damped, deterministic chaos regime, here, we emphasize the
role of thermal noise and noise-induced nonlinear response
phenomena. Moreover, we put forward a study of an acces-
sible, optimal parameter regime toward the objective for an
experimental verification of our findings. The underlying dy-
namics of this driven Josephson junction can conveniently be
described by the model of a resistively and capacitively
shunted junction in terms of the so-called Stewart–
McCumber model.1,12

The layout of the present work is as follows. In Sec. II,
we present the classical Stewart–McCumber model of the
Josephson junction. Next, in Sec. III, we elucidate various
regimes of anomalous transport behavior, such as ANC,
negative differential conductance �NDC�, and so termed
negative-valued nonlinear conductance �NNC�.

In Sec. IV, we work out the optimal regimes for the phe-
nomenon of the negative conductance. In Sec. V, we elabo-
rate on the experimental feasibility for an in situ confirma-
tion of our diversified theoretical predictions. Section VI
provides a summary and some conclusions.

II. STEWART–McCUMBER MODEL

This model describes the �semi�classical regime of the
voltage-current characteristics of a Josephson junction. The
model involves the Josephson supercurrent characterized by
the critical current I0, a normal �Ohmic� current character-
ized by the normal state resistance R, and a displacement
current accompanied with the junction capacitance C. The
ubiquitous thermal equilibrium noise consists of Johnson
noise associated with the resistance R. The dynamics of the
phase difference �=��t� across the junction is then de-
scribed by the following nonlinear equation of motion, e.g.,
see in Ref. 12:
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Here, a dot denotes the differentiation with respect to time t,
Id and Ia are the amplitudes of the applied dc and ac, respec-
tively, and � is the angular frequency of the ac driving. The
parameter kB denotes the Boltzmann constant and T is the
temperature of the system. Thermal equilibrium fluctuations
are modeled by �-correlated Gaussian white noise ��t� of
zero mean and unit intensity, i.e., ���t���s��=��t−s�.

The limitations of the Stewart–McCumber model and its
range of validity are discussed, e.g., in Secs. 2.5 and 2.6 of
the comprehensive review paper by Kautz.12 In particular, we
thus work within the small junction area limit and in a re-
gime where photon-assisted tunneling phenomena do not
contribute. Throughout the following, we shall adopt the di-
mensionless form of Eq. �1� from Refs. 1 and 12, namely,

d2�

dt�2 + �
d�

dt�
+ sin��� = i0 + i1 cos��1t�� + �2�D��t�� ,

�2�

where the dimensionless time t�= t /	0 and the characteristic
time 	0=1 /
p. The Josephson plasma frequency 
p

= �1 /���8EJEC is expressed by the Josephson coupling en-
ergy EJ= �� /2e�I0 and the charging energy EC=e2 /2C. The
“friction” coefficient �=	0 /RC is given by the ratio of two
characteristic times: 	0 and the relaxation time 	r=RC. This
dimensionless friction parameter � measures the strength of
dissipation. The amplitude and the angular frequency of the
ac are i1= Ia / I0 and �1=�	0=� /
p, respectively. The res-
caled dc reads i0= Id / I0, the rescaled zero-mean Gaussian
white noise ��t�� possesses the autocorrelation function
���t����u��=��t�−u�, and the noise intensity D=kBT /EJ is
given as the ratio of two energies, the thermal energy, and the
Josephson coupling energy �corresponding to the barrier
height�. A different scaling procedure, being more familiar
within the Brownian motor community, is detailed in the
Appendix.

The most important characteristic for the above system is
the current-voltage curve. To obtain it, we numerically inte-
grated Eq. �2�. For long time �to avoid initial conditions and
transient effects�, we calculated the stationary dimensionless
voltage

v = � d�

dt�
	 , �3�

where the brackets denote an average over both all the real-
izations of the thermal noise and a temporal average over one
cycle period of the external ac driving. The stationary physi-
cal voltage is then expressed as

V =
�
p

2e
v . �4�

Strictly speaking, the zero temperature limit, D=0, should
not be considered within the framework of the Stewart–
McCumber model because at zero temperature, the quantum
dynamics comes into play. However, in order to explain pe-
culiar properties of the system at nonzero temperature and/or
to seek optimal regimes, it is insightful nevertheless to con-
sider the deterministic dynamics, i.e. the zero noise case, D
=0. Then, the role of initial conditions is also relevant. This
is particularly so if several attractors coexist. In such a case,
an additional average over initial conditions must be per-
formed. We have chosen initial phases �0 that are equally
distributed over one period 
0,2�� and �dimensionless� ini-
tial voltages v0 equally distributed in the range 
−2,2�. Fur-
ther details of how to treat the deterministic case are pre-
sented, e.g., in Ref. 13. In the case of several attractors, it
means that the average is over attractors, whose weights are
proportional to corresponding basins of attractions. However,
it is worth stressing that the case D=0 generally is not
equivalent to the limit D→0 performed in the nonzero tem-
perature Fokker–Planck case �see the studies in Ref. 14�.

Physical systems described by Eq. �2� are widespread and
well known. An example is a Brownian particle moving in
the spatially periodic potential U���=U��+L�=−cos��� of
period L=2�, driven by the time-periodic force and a con-
stant force.15 Then, the variable � corresponds to the space
coordinate of the Brownian particle and ac and dc play the
role of driving forces on the particle. Other specific systems
include rotating dipoles in external fields,16,17 superionic
conductors,18 or charge density waves,19 to name just a few.

III. ANOMALOUS TRANSPORT BEHAVIOR

The deterministic dynamics corresponding to Eq. �2� en-
compasses a three-dimensional phase space, namely,
�� ,d� /dt� ,�1t�
 and contains four parameters, reading
�� , i0 , i1 ,�1
. Therefore, its dynamics is able to exhibit an
extremely rich behavior in phase space as a function of the
chosen system parameters.12,20 For example, its dynamics
features harmonic, subharmonic, quasiperiodic, and also cha-
otic types of behavior; for further details, we refer the read-
ers to the review in Ref. 12. At nonzero temperature, D�0,
thermal fluctuations lead to diffusive dynamics for which
stochastic escape events among possibly coexisting attractors
are possible.21 Moreover, when thermal noise is acting, the
system dynamics is constantly excited away from stable tra-
jectories; it thus can explore the whole phase space. In some
cases, the probability distribution can concentrate on regions
in phase space which do not coincide with stable trajectories.
The prominent example of such phenomena is a classical
excitable stable point, which under influence of noise can
produce a “limit-cycle-like” probability distribution.22 This
in turn can imply drastic consequences for the transport
properties.

From the reflection symmetry �→−� of the potential
U���=−cos��� and the time reflection t�→−t� of ac driving,
it follows that the average voltage is strictly zero if the dc is
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zero �i0=0�. If a nonvanishing dc is applied �i.e., i0�0�,
however, the above mentioned reflection symmetries are bro-
ken and a nonzero voltage typically emerges. Since the dy-
namics determined by Eq. �2� is nonlinear and the system is
multidimensional, it should not come as a surprise that the
current-voltage characteristic is typically nonlinear and often
depicts a nonmonotonic function of the system parameters.
Nevertheless, some most nonintuitive behaviors still remain
to be unraveled in parameter space, which seemingly have
escaped previous detailed investigations for this archetype
system.12

The current-voltage curve v=v�i0� is a nonlinear function
of the dimensionless dc strength i0. Upon inspecting the sym-
metries in the equation of motion we find that this function
is odd in the dc bias i0, i.e., v�−i0�=−v�i0�. Typically, the
voltage is an increasing function of dc. Such regimes corre-
spond in parameter space to a normal, Ohmic-like transport
behavior. More interesting are, however, those regimes of
anomalous transport, exhibiting �i� a �absolute� negative con-
ductance near zero dc bias, �ii� negative differential conduc-
tance, and �iii�, after crossing zero conductance, a negative-
valued conductance in a nonlinear regime displaced from
zero dc bias i0=0.

The numerical analysis of the system dynamics depicts
that anomalous transport occurs in a parameter range where
the driven system dynamics is strongly nonlinear. Although
there is no obvious direct connection to chaotic properties of
the system dynamics, we have found that regimes of anoma-
lous transport typically necessitate also a chaotic dynamics.
In particular, for the regime �=0.143 and �1=0.78 pre-
sented in Fig. 1, the numerical study shows that the first
bifurcation cascade at D=0 leading to chaos occurs near i1
=0.477 �cf. the dotted line in Fig. 1�, while the regime of an
anomalous transport behavior starts out near i1�0.637. Not
unexpectedly, no anomalous transport occurs in the regime
of approximate linear dynamics.

A. Absolute negative conductance

In transport theory, the Green–Kubo linear response re-
gime plays an important role. It allows one to obtain linear

transport coefficients. For the system described by Eq. �2�,
there are regimes where for sufficiently small values of the
dc bias i0, linear response theory holds. This is characterized
by the relation23,24

v = rLi0. �5�

It defines the linear transport coefficient rL=rL�� , i1 ,�1 ,D�,
which does not depend on i0, and is called the static resis-
tance or gL=1 /rL is the conductance in the linear response
regime. Since the full response also exhibits a nonlinear be-
havior, it is necessary to recall that the resistance rL is de-
fined in the limit of a small dc, rL=limi0→0
v�i0� / i0�. The
case rL�0 corresponds to the normal transport behavior or
the Ohmic-like regime. The case rL
0 amounts to the situ-
ation when the voltage assumes the opposite sign of the dc
bias. It is termed here as the absolute negative conductance
�in analogy to the absolute negative mobility of driven
Brownian particles4–7�. In Fig. 2, we exemplify this situation.
Indeed, for dc values varying between i0� �−0.04,0.04�, the
voltage assumes a sign opposite to i0. The driving amplitude
of the ac at i1=0.73 corresponds to the second negative-
valued minimum of the averaged voltage shown in Fig. 1 for
a temperature D=10−3. The first negative-valued minimum
of v versus i1 in Fig. 1 has been explored in greater detail in
our previous work in Ref. 10. Let us emphasize here that, in
distinct difference to this case with nonzero thermal noise
D�0, in the limit of vanishing noise �i.e., when D=0�, the
averaged voltage is, in fact, identically zero at the ac-driving
strength i1=0.73. This implies that this counterintuitive phe-
nomenon of ANC is solely induced by thermal equilibrium
fluctuations. For the record, there also exist linear response
regimes where even in the deterministic case, the voltage can
become negative for a positive dc �and vice versa�.10,11 From
Fig. 1, one can observe that there exist several parameter
windows depicting such a noise-induced ANC behavior: the
conductance gL=gL�� , i1 ,�1 ,D� exhibits sign changes mul-
tiple times upon increasing the ac-amplitude strength i1. Be-
tween such ANC windows with gL
0, normal transport re-
gimes with gL�0 occur. Moreover, we tested that the ANC
windows remain stable upon a small variation of the remain-
ing parameters.

B. Negative differential conductance

If the voltage v is not a monotonic function of the dc i0,
the differential conductance can assume negative values. The
differential �or dynamic� resistance, defined by the relation24

rD�i0� =
dv�i0�

di0
, �6�

may therefore assume negative values within some interval
of dc-bias values i0. In Fig. 2, we depict two examples of
such behavior: the NDC gD�i0�=1 /rD�i0� is detected for the
dc i0� �0.0796,0.086� and i0� �0.132,0.166�, note the two
inset panels in Fig. 2. To the best of our knowledge, this
typical NDC voltage-current characteristic shown in Fig. 2
has not yet been experimentally reported for symmetrical
systems, such as the system in Eq. �2�. For asymmetric
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FIG. 1. �Color online� The diagram depicts the dependence of
the voltage versus the variation of the driving amplitude i1 of the ac
for a positive dc set at i0=0.0159. Remaining parameters are chosen
as �=0.143, �1=0.78, and temperatures D=0 
dotted line �blue�,
left scale� and D=10−3 
solid line �black�, right scale�.
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ratchet systems, this effect was described in Ref. 25.
We note that both effects of absolute and differential

negative conductance are found in the part of the �1-�
plane, where �1
1 and �1��. In this region, Shapiro steps
do not exist, i.e., there are no phase locked regions which
interrupt an otherwise linear current current-voltage charac-
teristic. For a detailed analysis of the different regions of the
�1-� plane with respect to the occurrence of Shapiro steps,
see the discussion in Sec. 5.1 of the review by Kautz.12 In
Fig. 2, current-voltage characteristics for two parameters sets
�1=0.78, �=0.143 and �1=7.8, �=0.143 are displayed.
The characteristics for the smaller frequency contain several
bias current intervals with negative conductance and several
locking regimes but no Shapiro steps. The second current-
voltage characteristic does have pronounced Shapiro steps26

but no regions with negative conductance.

C. Nonlinear response regime displaced from zero bias i0=0:
Negative-valued conductance

In the nonlinear response regime, the “nonlinear resis-
tance” or the static resistance at a fixed bias current is de-
fined by the relation23,24

rN�i0� = rN�i0;�,i1,�1,D� =
v�i0�

i0
. �7�

It typically depends on i0 in a nonlinear and nonmonotonic
manner. The nonlinear conductance refers to its inverse, i.e.,
gN�i0�=1 /rN�i0�. In the linear response regime, the voltage
tends to zero when the dc tends to zero. In the nonlinear
response regime, the voltage can tend to zero even if the dc
assumes a nonzero, finite value. For example, two positive
values of the dc �i01 , i02
 can emerge such that in between the
voltage is negative. Then, the nonlinear conductance coeffi-
cient gN�i0� is negative valued in this very interval �i01 , i02�,
which means that the voltage takes on the opposite sign of
the dc for a nonzero valued dc-bias strength i0. Indeed, this
situation is presented in Fig. 3. The amplitude of the ac is set
at i1=0.668; it corresponds to the first negative-valued mini-
mum of the averaged voltage depicted in Fig. 1. For small
dc’s, ANC exists �see inset of Fig. 3�, while for larger dc’s i0,
NNC results. NNC is a predominantly deterministic phenom-
enon which survives in the presence of small thermal noise.
Indeed, we observe in Fig. 3 that for the case D=0, this
effect is most pronounced and takes place in a wide param-
eter interval �i01 , i02�. The long-time trajectories of the dy-
namical system 
Eq. �2�� correspond to running states into
the negative direction of �, which are of period 2 and there-
fore the deterministic average voltage is large �cf. Fig. 3�.
When the temperature increases, the interval �i01 , i02� shrinks
and the amplitude of the voltage decreases. Above some tem-
perature �D�8�10−4 in Fig. 3�, the NNC effect disappears
and only ANC survives.

We end this section by a statement that the occurrence of
anomalous transport may be governed by different mecha-
nisms. In some regimes, it is solely induced by thermal equi-
librium fluctuations, i.e., the effects are absent for vanishing
thermal fluctuations, D=0. In other regimes, anomalous
transport may also occur in the noiseless deterministic sys-
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FIG. 2. �Color online� The functional dependence of voltage v
on the dc current i0 �i-v characteristic� is compared for two sets of
parameters, which either display negative conductance or Shapiro
steps. Panel �a�, which corresponds to ac frequency �1=0.78, ac-
driving strength i1=0.73, friction �=0.143, and noise strength D
=10−3, displays both absolute negative mobility in an interval con-
taining i0=0 and different regions with negative differential con-
ductivity �cf. also the respective enlarged regions in the two insets�.
Panel �b� displays the i-v characteristic for the parameter values of
panel �a� �thin solid line� and the i-v characteristic for �1=7.8, i1

=73, �=0.143, and D=0 �thick solid line�. Shapiro steps are clearly
visible at v=ki0 /� for k=1 /2,1 ,2 ,3 �dotted horizontal lines�. Away
from these steps, the i-v charateristic follows the Ohmic law v
= i0 /� �dotted inclined line�. Panel �c� presents the i-v characteristic
for the small driving frequency ��1=0.78� for positive bias currents
i0 up to i0=0.48 �solid line� and the i-v characteristic for the same
set of junction parameters at zero noise �D=0� �dotted line with
wide distance of dots� and compares them with a rescaled version
vcª0.1v�10i0� of the i-v characteristic for the larger frequency
such that the full range shown in panel �b� is displayed again.
Whereas the linear overall behavior of the large frequency curve is
interrupted only at a few Shapiro steps, the small frequency i-v
characteristic is dominated by the nonlinearities also away from the
locking regions at v=�1 /2 and v=3�1.
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tem and the effects increasingly fade out with increasing
temperature.10 Both situations are rooted in the complex de-
terministic structure of the nonlinear dynamics governed by
a variety of stable and unstable orbits.

IV. OPTIMAL PARAMETER REGIMES FOR THE
OCCURRENCE OF NEGATIVE CONDUCTANCE

In our recent work in Ref. 10 and in the previous section,
we discussed some fixed parameters for �� ,�1
 for which
the negative conductance �ANC or/and NNC� does emerge.
Are these two values exceptional? To answer this question,
we have searched the part of the three-dimensional parameter
space that is specified by the ac-driving strength �i1

� �0,6.37�
, angular driving frequency ��1� �0,1.91�
, and
friction strength ��� �0,0.796�
 in order to locate regions of
negative conductances in the deterministic case, when D=0.
We set the dc to a small value i0=0.0159 and calculated the
value of the current for many randomly chosen parameters i1,
�1 and �.27 The inspection of the results revealed that there
are values of friction � for which regions of negative con-
ductance are most prominent. One such value is �=0.191 for
which the negative conductance is most pronounced in a
relatively large domain of parameter variation with relatively
large values of the dimensionless voltage. Therefore, we per-
formed a more accurate search for the section �=0.191 and
analyzed the two-dimensional parameter domain �i1

� �0,6.37� ,�1� �0,1.91�
. The results are depicted in Fig.
4. The points in Fig. 4 which are indicated by different gray
scales correspond to values where v�i0=0.0159�
0: the
voltage assumes, thus, the opposite sign of the dc. Strictly

speaking, a negative voltage at the finite bias i0=0.0159 does
not necessarily imply ANC. However, in most cases, under
these conditions, ANC is observed in the presence of small
thermal noise. We have also found that the noise-induced
ANC typically occurs also for parameters which differ only
slightly from those where v�i0=0.0159�
0. Thus, this sys-
tematic analysis provides insight into the structure of the
parameter space and proves useful for designing correspond-
ing Josephson junction experiments. Finally, using exten-
sively this technique, we are rather convinced that no re-
maining regimes of the negative conductance are likely to
emerge in this system than those already depicted in Fig. 4.
The gray scales in Fig. 4 represent various regimes of the
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0 0.02
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FIG. 3. Voltage vs dc: The reentrant effect of the negative re-
sponse �v
0� is shown at a positive bias �i0�0� for the following
set of parameters: i1=0.668, �=0.143, �1=0.78, and four values of
temperature D. For small i0, the absolute negative conductance is
observed for nonzero temperature and it is solely induced by ther-
mal fluctuations 
cf. panel �a��. For larger i0, negative nonlinear
conductance results as a deterministic effect. The corresponding
long-time trajectory ��t�� for i0=0.0796 shown in panel �b� belongs
to running states into the negative direction of � resulting in the
large average voltage. The value of the amplitude of ac driving
corresponds to the first negative-valued minimum of the mean volt-
age with respect to the ac �cf. in Fig. 1�.

FIG. 4. �Color online� The transport properties of the driven
system in the parameter space �i1 ,�1
 at a representative friction
value of �=0.191, dc bias i0=0.0159, and zero noise strength D
=0. All points in the parameter space, where a negative conduc-
tance occurs, are marked by symbols with different gray scales. The
coding corresponds to different regimes of values assumed by the
ratio v /�1: dark gray �red� denotes the interval �−0.94,0�, light
gray �green� �−1.26,−0.94�, and black �blue� corresponds to values
less than −1.26. Most of the dark gray points correspond to chaotic
trajectories. It turns out that the black regimes are most susceptible
to thermal fluctuations, which means that the negative-valued con-
ductance rapidly fades away toward positive values with increasing
thermal noise intensity. In panel �a�, one clearly can distinguish a
large compact region exhibiting negative-valued conductance, being
enlarged with the upper panel �b�. In regions different from this one,
we find that negative-valued conductance occurs in narrow “bands”
only. For an experimental realization of negative conductance, the
most promising parameter regimes are those regions marked by
light gray. This holds, in particular, for the zoomed light gray re-
gimes depicted in panel �b�.
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ratio v /�1. One can distinguish two features in the param-
eter space: a stripelike structure for a broad range of param-
eters and one pronounced region, zoomed in panel �b�. The
stripelike structure suggests that in an experiment, one will
observe with large probability negative conductance upon
variation of a single parameter. In this context, the region
shown in panel �b� is especially interesting because the nega-
tive conductance depicted there exhibits a relatively large
robustness with respect to a variation of the system param-
eters.

In the deterministic case, we identify three classes of tra-
jectories which generate negative conductance. This is
marked by different gray scales in Fig. 4. Dark gray corre-
sponds to chaotic trajectories. For this regime of parameters,
the conductance is negative also for small nonzero tempera-
tures. Light gray corresponds to periodic orbits. For this re-
gime of parameters, the conductance is negative also for
small nonzero temperatures. Black regions also correspond
to periodic orbits; for this regime of parameters, the negative
conductance, however, quickly diminishes as the temperature
is raised.

From the experimental viewpoint, the most interesting re-
gimes are those where the negative conductance is most ro-
bust within some finite temperature interval. In the case pre-
sented in Fig. 4, this corresponds to the dark and light gray
regions. Therefore, we set, e.g., �1=1.1 
cf. panel �b� of Fig.
4�, in order to observe the variation of the negative conduc-
tance when passing through the dark and light gray regions.
Details are depicted in the bifurcation diagram �see Fig. 5�.
In the deterministic case, the voltage remains almost constant
under small variations of the amplitude i1 of the ac when the
parameters belong to the light gray regions 
note the voltage
dependence on i1 around i1=2.64 and i1=3 depicted in panel
�a� of Fig. 5 for D=0�. On the other hand, the voltage
changes irregularly when i1 is changed smoothly within the
red regions 
note the voltage dependence on i1 around i1
=2.78 depicted in panel �a� of Fig. 5 for D=0�. In Fig. 5, the
averaged voltage is also shown for a small but nonvanishing
temperature. When driving within the interval a
� �2.55,3.15�, the voltage is negative for D=10−3 and rela-
tively stable with respect to a small variation of parameters.
The region around i1=3 lends itself as optimal for an experi-
mental verification of our predicted anomalous transport fea-
tures.

V. EXPERIMENTALLY ACCESSIBLE REGIMES FOR
ANOMALOUS TRANSPORT

The results presented above are given for dimensionless
variables and dimensionless parameter values. In order to
motivate experimentalists to test our predictions and find-
ings, it is convenient to transform all quantities back to their
original dimensional values and dimensional parameter
strengths. There are three important parameters which char-
acterize the function of a Josephson junction. These are the
critical current I0, the resistance R, and its capacitance C.
Three further parameters characterize the external driving,
namely, the strength of the dc Id, the amplitude of the peri-
odically varying ac Ia, and its angular frequency �. Finally,

the temperature T must be chosen large enough such that the
junction operates in the semiclassical regime. These physical
quantities are related to the corresponding dimensionless
quantities by the relations

V = ��
p

2e
�v, � = 
p�1,

1

RC
= 
p� , �8�

with the frequency scale 
p given by the characteristic
plasma frequency, which reads


p
2 =

2eI0

�C
. �9�

The driving strengths and the actual physical temperature
read

(b)

v > 0
v < 0

v = 0

v > 0

v < 0

0

1
2
π

π

3
2
π

2π

φsφs

2.4 2.6 2.8 3 3.2 3.4
i1i1

(a)

−1

0

1

vv

D = 0
D = 10−3

D = 3 · 10−3

FIG. 5. �Color online� This figure elucidates the transport fea-
tures and the dynamical properties for parameter values in �i1 ,�1

space within the section obtained by fixing the angular driving fre-
quency at �1=1.1 
cf. the dotted line in panel �b� of Fig. 4�. The
blue �solid� line in panel �a� depicts the dependence of the average
voltage on the amplitude of the ac for zero noise D=0. The influ-
ence of thermal fluctuations on the average voltage is shown for
two temperature values D=10−3 �dashed line� and D=3�10−3 �dot-
ted line�. We do find that a negative-valued conductance indeed can
survive at small nonzero temperatures. The transport properties of
the system follow from the underlying complex dynamics. In panel
�b�, we show the bifurcation diagram: the Poincare section of the
phase in the deterministic system. The attractors are color coded
according to the sign of the assumed corresponding average volt-
age: blue yields a negative average voltage �also pointed by arrows
with v
0�, green gives zero �also pointed by arrows with v=0�,
and red amounts to a positive average voltage �also pointed by
arrows with v�0�.
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Ia = I0i1, Id = I0i0, T = � �I0

2ekB
�D , �10�

being all scaled by the value of the critical current I0.
First, one should fix the operational temperature T of the

classical experimental regime. The last relation in Eq. �10�
then yields the strength of critical current I0. This in turn
determines the amplitude strengths Ia and Id. Fixing the fre-
quency �=� /2� of the microwave source then determines
via the chosen relevant value of the dimensionless parameter
�1 the strength of the plasma frequency 
p. This in turn
determines the magnitude of the capacitance C via the rela-
tion in Eq. �9�, and the resistance R follows from the last
relation in Eq. �8�. Moreover, one should check whether the
parameters such chosen obey the inequalities

�
p � EJ, �
p � kBT , �11�

which, taken together, guarantee that the junction indeed op-
erates in the �semi�classical regime, as presumed with Eq.
�1�. These inequalities imply that the level spacing of the
plasma oscillation is small, both compared to the coupling
energy EJ and the thermal energy kBT.

To be explicit, we here evaluate some real experimental
circumstances which can present “optimal” conditions to ex-
perimentally verify negative conductance. Upon inspection
of our dimensionless analysis, the following parameter set is
an example of the optimal regime: i1=3, �1=1.11, �
=0.191, and D=10−3. For a physical temperature of T=4 K,
the critical current is then I0=167.8 �A, the amplitude
strength becomes Ia=507 �A, the ac-angular frequency
emerges as �=150 GHz, and Id=2,67 �A with the capaci-
tance being C=27.9 pF and the resistance value at
R=1.4 �. Under these conditions, the absolute value of the
voltage amounts to V=3.54 �V.

The NDC regime, which is presented in Fig. 2, is
observed for i1=0.73, �1=0.78, �=0.143, and D=10−3,
which for a temperature at T=4 K implies a critical
current I0=167.8 �A, Ia=122 �A, ac-angular frequency
�=150 GHz, and Id varying between ��13.36,14.43� �A
for i0� �0.0796,0.086�, with the capacitance set at
C=13.83 pF and the resistance set at R=2.63 �. Under these
conditions, the absolute value of the voltage approximately
reads V=730 �V.

VI. CONCLUSIONS

With this work, we took a closer look at the richness of
anomalous transport behavior occurring in a biased and har-
monically driven Josephson junction. As it turns out, the un-
derlying chaotic dynamics together with the influence of
thermal noise triggers a whole variety of unexpected trans-
port features. Apart from regions displaying negative differ-
ential conductance behavior, we could identify different
types of transport characteristics such as noise-induced abso-
lute negative conductance near zero bias and negative-valued
conductance in the strongly nonlinear response regime. Let
us summarize these various transport phenomena occurring
in an ac-driven Josephson junction as described by Eq. �1�.

�1� The dependence of the voltage on the angular driving
frequency �1 of the ac drive depicts windows of determin-

istic and thermally induced ANC regimes: ANC appears and
disappears as the frequency increases �for a preliminary ac-
count on this effect, see also Ref. 28�.

�2� The dependence of voltage versus the amplitude i1 of
the ac drive depicts windows of thermal-noise-induced ANC
regimes �cf. Fig. 1�.

�3� The voltage behavior at fixed bias as a function of
thermal temperatures D exhibits many familiar features
known from the field of Brownian motors,29 such as the oc-
currence of a voltage reversal versus D or a typical bell-
shaped behavior versus noise strength D.30

�4� The voltage as a function of the bias current i0 can
exhibit each of the three anomalous transport features,
namely, ANC, NNC, and NDC.

�5� Reentrant phenomena of negative conductance re-
gimes occur as a function of the dc bias i0. Starting out from
zero, the voltage may decrease for increasing i0, reaching a
negative-valued local minimum value which changes over
into a local positive-valued maximum upon increasing i0.
Upon further increasing i0, the voltage starts to decrease
again towards a local, negative-valued minimum, thus exhib-
iting NNC. Finally, it increases monotonically with increas-
ing i0, displaying an almost perfect Ohmic-like dependence.

Our identified transport features, as presented in Figs. 1
and 5, are also accessible to an experimental verification via
appropriately designing the experimental working param-
eters for the Josephson system. Here, we identified such pa-
rameter sets Sec. V, while yet a different one has been indi-
cated in our earlier presentation in Ref. 10. We are confident
that our predictions will invigorate experimentalists to under-
take the experimental efforts to check our various predic-
tions.
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APPENDIX

In our previous work,10 we used a scaling popular among
the “ratchet” community, where the “coordinate” variable
x=� /2� is rescaled to the unit interval. Then, the rescaled
form of Eq. �1� reads

ẍ + �ẋ + 2� sin�2�x� = f + a cos�
s� + �2�D��s� ,

�A1�

where the dot denotes differentiation with respect to the di-
mensionless time s= t /	1, where 	1=2� /
p. The relations
between the parameters in two scalings in Eqs. �2� and �A1�
are as follows:

� = 2��, f = 2�i0, a = 2�i1, 
 = 2��1. �A2�

Now, the dimensionless velocity v= �dx /ds� and expressions
for the voltage in Eq. �4� and the noise intensity D are iden-
tical for both scaling procedures.
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