1,773 research outputs found

    The Lateral Membrane Organization and Dynamics of Myelin Proteins PLP and MBP Are Dictated by Distinct Galactolipids and the Extracellular Matrix

    Get PDF
    In the central nervous system, lipid-protein interactions are pivotal for myelin maintenance, as these interactions regulate protein transport to the myelin membrane as well as the molecular organization within the sheath. To improve our understanding of the fundamental properties of myelin, we focused here on the lateral membrane organization and dynamics of peripheral membrane protein 18.5-kDa myelin basic protein (MBP) and transmembrane protein proteolipid protein (PLP) as a function of the typical myelin lipids galactosylceramide (GalC),and sulfatide, and exogenous factors such as the extracellular matrix proteins laminin-2 and fibronectin, employing an oligodendrocyte cell line, selectively expressing the desired galactolipids. The dynamics of MBP were monitored by z-scan point fluorescence correlation spectroscopy (FCS) and raster image correlation spectroscopy (RICS),while PLP dynamics in living cells were investigated by circular scanning FCS. The data revealed that on an inert substrate the diffusion rate of 18.5-kDa MBP increased in GalC-expressing cells, while the diffusion coefficient of PLP was decreased in sulfatide-containing cells. Similarly, when cells were grown on myelination-promoting laminin-2, the lateral diffusion coefficient of PLP was decreased in sulfatide-containing cells. In contrast, PLP's diffusion rate increased substantially when these cells were grown on myelination-inhibiting fibronectin. Additional biochemical analyses revealed that the observed differences in lateral diffusion coefficients of both proteins can be explained by differences in their biophysical, i.e., galactolipid environment, specifically with regard to their association with lipid rafts. Given the persistence of pathological fibronectin aggregates in multiple sclerosis lesions, this fundamental insight into the nature and dynamics of lipid-protein interactions will be instrumental in developing myelin regenerative strategies

    Riding the waves of the COVID-19 pandemic in South Korea

    Get PDF
    During the first months of the coronavirus disease 2019 (COVID-19) pandemic in early 2020, South Korea stood as one of the most successful in preventing a nationwide outbreak. The country was unique in that it did so without enforcing massive border restrictions and tight social distancing measures, instead focusing on maximal testing, contact tracing, and treatment. But as the year 2020 went on, the country has suffered second and third waves, each one being larger and harder to combat than the last. The Korean government, however, has been unwilling to impose stringent measures due to potential economic consequences and has still relied on its initial strategies in an attempt to prevent further disease transmission. It is therefore crucial to revisit their position beyond their early successes to re-evaluate the effectiveness of their strategy, and to finally decide if it is time to move on to more drastic measures

    Hospital Preparedness and SARS

    Get PDF
    On May 23, 2003, Toronto experienced the second phase of a severe acute respiratory syndrome (SARS) outbreak. Ninety cases were confirmed, and >620 potential cases were managed. More than 9,000 persons had contact with confirmed or potential case-patients; many required quarantine. The main hospital involved during the second outbreak was North York General Hospital. We review this hospital’s response to, and management of, this outbreak, including such factors as building preparation and engineering, personnel, departmental workload, policies and documentation, infection control, personal protective equipment, training and education, public health, management and administration, follow-up of SARS patients, and psychological and psychosocial management and research. We also make recommendations for other institutions to prepare for future outbreaks, regardless of their origin

    Study of the Detonation Phase in the Gravitationally Confined Detonation Model of Type Ia Supernovae

    Full text link
    We study the gravitationally confined detonation (GCD) model of Type Ia supernovae through the detonation phase and into homologous expansion. In the GCD model, a detonation is triggered by the surface flow due to single point, off-center flame ignition in carbon-oxygen white dwarfs. The simulations are unique in terms of the degree to which non-idealized physics is used to treat the reactive flow, including weak reaction rates and a time dependent treatment of material in nuclear statistical equilibrium (NSE). Careful attention is paid to accurately calculating the final composition of material which is burned to NSE and frozen out in the rapid expansion following the passage of a detonation wave over the high density core of the white dwarf; and an efficient method for nucleosynthesis post-processing is developed which obviates the need for costly network calculations along tracer particle thermodynamic trajectories. Observational diagnostics are presented for the explosion models, including abundance stratifications and integrated yields. We find that for all of the ignition conditions studied here, a self regulating process comprised of neutronization and stellar expansion results in final \iso{Ni}{56} masses of ∼\sim1.1\msun. But, more energetic models result in larger total NSE and stable Fe peak yields. The total yield of intermediate mass elements is ∼0.1\sim0.1\msun and the explosion energies are all around 1.5×1051\times10^{51} ergs. The explosion models are briefly compared to the inferred properties of recent Type Ia supernova observations. The potential for surface detonation models to produce lower luminosity (lower \iso{Ni}{56} mass) supernovae is discussed.Comment: 43 pages, 4 tables, 20 figures -- submitted to Ap

    The ICSI Meeting Corpus

    Get PDF
    We have collected a corpus of data from natural meetings that occurred at the International Computer Science Institute (ICSI) in Berkeley, California over the last three years. The corpus contains audio recorded simultaneously from head-worn and table-top microphones, word-level transcripts of meetings, and various metadata on participants, meetings, and hardware. Such a corpus supports work in automatic speech recognition, noise robustness, dialog modeling, prosody, rich transcription, information retrieval, and more. We present details on the contents of the corpus, as well as rationales for the decisions that led to its configuration. The corpus were delivered to the Linguistic Data Consortium (LDC)

    Catching Element Formation In The Act

    Full text link
    Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions.Comment: 14 pages including 3 figure

    Mental health and well-being of children in the Philippine setting during the COVID-19 pandemic

    Get PDF
    The coronavirus disease 2019 (COVID-19) pandemic has subjected the mental health and well-being of Filipino children under drastic conditions. While children are more vulnerable to these detriments, there remains the absence of unified and comprehensive strategies in mitigating the deterioration of the mental health of Filipino children. Existing interventions focus on more general solutions that fail to acknowledge the circumstances that a Filipino child is subjected under. Moreover, these strategies also fail to address the multilayered issues faced by a lower-middle-income country, such as the Philippines. As the mental well-being of Filipino children continues to be neglected, a subsequent and enduring mental health epidemic can only be expected for years to come
    • …
    corecore