166 research outputs found

    Pathophysiology of Acute Myocardial Infarction

    Get PDF
    n/

    Coronary occlusion: cause or consequence of acute myocardial infarction?

    Get PDF
    A 45-year-old man with unstable angina developed persistent ECG changes of myocardial ischemia during coronary angiography. Occlusion of the left anterior descending branch (LAD) was documented 20 minutes after these changes. Intracoronary nitrate, Ca antagonist, urokinase, removal by percutaneous transluminal coronary angioplasty (PTCA) of atherosclerotic obstructions, and emergency bypass surgery failed to restore myocardial perfusion. Only short periods of reflow were obtained by urokinase and PTCA. The repeated coronary injections demonstrated a progressive disappearance of the left anterior descending artery (LAD) starting from the distal portion and progressing retrogradely up to the origin of the vessel. The patient developed a transmural anterolateral myocardial infarction and 12 months later underwent cardiac transplantation for untractable failure. His heart was examined and the infarct confirmed. Analysis of this case suggests that coronary occlusion in acute myocardial infarction can be an event secondary to increased intramyocardial resistance rather than the cause of reduced coronary blood flow in subepicardial coronary arteries

    Ultrasound Imaging Versus Morphopathology in Cardiovascular Diseases: The Heart Failure

    Get PDF
    This review article summarizes the results of histopathological studies to assess heart failure in humans. Different histopathological features underlying the clinical manifestations of heart failure are reviewed. In addition, the present role of echocardiographic techniques in assessing the failing heart is briefly summarized

    Ultrasound imaging versus morphopathology in cardiovascular diseases. Coronary collateral circulation and atherosclerotic plaque

    Get PDF
    This review article is aimed at comparing the results of histopathological and clinical imaging studies to assess coronary collateral circulation in humans. The role of collaterals, as emerging from morphological studies in both normal and atherosclerotic coronary vessels, is described; in addition, present role and future perpectives of echocardiographic techniques in assessing collateral circulation are briefly summarized

    Lymphangiogenesis in myocardial remodelling after infarction

    Get PDF
    Ishikawa Y, Akishima-Fukasawa Y, Ito K, Akasaka Y, Tanaka M, Shimokawa R, Kimura-Matsumoto M, Morita H, Sato S, Kamata I & Ishii T (2007) Histopathology51, 345–35

    Acute cardiac injury after subarachnoid haemorrhage: two case reports

    Get PDF
    It is well known that cardiopulmonary complications are often associated to subarachnoid haemorrhage. For appropriate therapeutic managing it is very important to distinguish acute coronary syndrome from neurogenic myocardial injury, which is a reversible condition. Furthermore, because the hearts of brain dead patients may be utilized for therapeutic purpose, it has became of importance to rule out erroneous diagnosis of cardiac ischemia in order to avoid rejection of hearts potential suitable for transplantation

    Non-contrast cardiac computed tomography can accurately detect chronic myocardial infarction: Validation study

    Get PDF
    BackgroundThis study evaluates whether non-contrast cardiac computed tomography (CCT) can detect chronic myocardial infarction (MI) in patients with irreversible perfusion defects on nuclear myocardial perfusion imaging (MPI).MethodsOne hundred twenty-two symptomatic patients with irreversible perfusion defect (N = 62) or normal MPI (N = 60) underwent coronary artery calcium (CAC) scanning. MI on these non-contrast CCTs was visually detected based on the hypo-attenuation areas (dark) in the myocardium and corresponding Hounsfield units (HU) were measured.ResultsNon-contrast CCT accurately detected MI in 57 patients with irreversible perfusion defect on MPI, yielding a sensitivity of 92%, specificity of 72%, negative predictive value (NPV) of 90%, and a positive predictive value (PPV) of 77%. On a per myocardial region analysis, non-contrast CT showed a sensitivity of 70%, specificity of 85%, NPV of 91%, and a PPV of 57%. The ROC curve showed that the optimal cutoff value of LV myocardium HU to predict MI on non-contrast CCT was 21.7 with a sensitivity of 97.4% and specificity of 99.7%.ConclusionNon-contrast CCT has an excellent agreement with MPI in detecting chronic MI. This study highlights a novel clinical utility of non-contrast CCT in addition to assessment of overall burden of atherosclerosis measured by CAC

    Myocardial Fat Imaging

    Get PDF
    The presence of intramyocardial fat may form a substrate for arrhythmias, and fibrofatty infiltration of the myocardium has been shown to be associated with sudden death. Therefore, noninvasive detection could have high prognostic value. Fat-water–separated imaging in the heart by MRI is a sensitive means of detecting intramyocardial fat and characterizing fibrofatty infiltration. It is also useful in characterizing fatty tumors and delineating epicardial and/or pericardial fat. Multi-echo methods for fat and water separation provide a sensitive means of detecting small concentrations of fat with positive contrast and have a number of advantages over conventional chemical-shift fat suppression. Furthermore, fat and water–separated imaging is useful in resolving artifacts that may arise due to the presence of fat. Examples of fat-water–separated imaging of the heart are presented for patients with ischemic and nonischemic cardiomyopathies, as well as general tissue classification

    Myocarditis in CD8-Depleted SIV-Infected Rhesus Macaques after Short-Term Dual Therapy with Nucleoside and Nucleotide Reverse Transcriptase Inhibitors

    Get PDF
    Background: Although highly active antiretroviral therapy (HAART) has dramatically reduced the morbidity and mortality associated with HIV infection, a number of antiretroviral toxicities have been described, including myocardial toxicity resulting from the use of nucleotide and nucleoside reverse transcriptase inhibitors (NRTIs). Current treatment guidelines recommend the use of HAART regimens containing two NRTIs for initial therapy of HIV-1 positive individuals; however, potential cardiotoxicity resulting from treatment with multiple NRTIs has not been addressed. Methodology/Principal Findings: We examined myocardial tissue from twelve CD8 lymphocyte-depleted adult rhesus macaques, including eight animals infected with simian immunodeficiency virus, four of which received combined antiretroviral therapy (CART) consisting of two NRTIs [(9-R-2-Phosphonomethoxypropyl Adenine) (PMPA) and (+/−)-beta-2′,3′-dideoxy-5-fluoro-3′-thiacytidine (RCV)] for 28 days. Multifocal infiltrates of mononuclear inflammatory cells were present in the myocardium of all macaques that received CART, but not untreated SIV-positive animals or SIV-negative controls. Macrophages were the predominant inflammatory cells within lesions, as shown by immunoreactivity for the macrophage markers Iba1 and CD68. Heart specimens from monkeys that received CART had significantly lower virus burdens than untreated animals (p<0.05), but significantly greater quantities of TNF-α mRNA than either SIV-positive untreated animals or uninfected controls (p<0.05). Interferon-γ (IFN-γ), IL-1β and CXCL11 mRNA were upregulated in heart tissue from SIV-positive monkeys, independent of antiretroviral treatment, but CXCL9 mRNA was only upregulated in heart tissue from macaques that received CART. Conclusions/Significance: These results suggest that short-term treatment with multiple NRTIs may be associated with myocarditis, and demonstrate that the CD8-depleted SIV-positive rhesus monkey is a useful model for studying the cardiotoxic effects of combined antiretroviral therapy in the setting of immunodeficiency virus infection

    Loss of DPP4 activity is related to a prothrombogenic status of endothelial cells: implications for the coronary microvasculature of myocardial infarction patients

    Get PDF
    Pro-coagulant and pro-inflammatory intramyocardial (micro)vasculature plays an important role in acute myocardial infarction (AMI). Currently, inhibition of serine protease dipeptidyl peptidase 4 (DPP4) receives a lot of interest as an anti-hyperglycemic therapy in type 2 diabetes patients. However, DPP4 also possesses anti-thrombotic properties and may behave as an immobilized anti-coagulant on endothelial cells. Here, we studied the expression and activity of endothelial DPP4 in human myocardial infarction in relation to a prothrombogenic endothelial phenotype. Using (immuno)histochemistry, DPP4 expression and activity were found on the endothelium of intramyocardial blood vessels in autopsied control hearts (n = 9). Within the infarction area of AMI patients (n = 73), this DPP4 expression and activity were significantly decreased, coinciding with an increase in Tissue Factor expression. In primary human umbilical vein endothelial cells (HUVECs), Western blot analysis and digital imaging fluorescence microscopy revealed that DPP4 expression was strongly decreased after metabolic inhibition, also coinciding with Tissue Factor upregulation. Interestingly, inhibition of DPP4 activity with diprotin A also enhanced the amount of Tissue Factor encountered and induced the adherence of platelets under flow conditions. Ischemia induces loss of coronary microvascular endothelial DPP4 expression and increased Tissue Factor expression in AMI as well as in vitro in HUVECs. Our data suggest that the loss of DPP4 activity affects the anti-thrombogenic nature of the endothelium
    corecore