1,218 research outputs found

    Predictive Probabilities In Employee Drug-Testing

    Get PDF
    Substance abuse in the U.S. has been estimated to cost $99 billion annually through lower productivity. Yet the authors urge caution in attempting to reduce these costs and health and safety Risks. In doing so, they cite commonly high frequencies of false negatives and false positives in employee drug tests - the latter having the potential to do great injustice to many drug-free employees

    Performance Indicator Analysis of Proficiency Criteria in the Drug-Testing-Laboratory Certification Process of the DHHS

    Get PDF
    The authors highlight and propose remedies for problems in the proficiency criteria used in certifying laboratories for drug testing federal employees in the United States

    Information transmission through a noisy quantum channel

    Get PDF
    Noisy quantum channels may be used in many information-carrying applications. We show that different applications may result in different channel capacities. Upper bounds on several of these capacities are proved. These bounds are based on the coherent information, which plays a role in quantum information theory analogous to that played by the mutual information in classical information theory. Many new properties of the coherent information and entanglement fidelity are proved. Two nonclassical features of the coherent information are demonstrated: the failure of subadditivity, and the failure of the pipelining inequality. Both properties arise as a consequence of quantum entanglement, and give quantum information new features not found in classical information theory. The problem of a noisy quantum channel with a classical observer measuring the environment is introduced, and bounds on the corresponding channel capacity proved. These bounds are always greater than for the unobserved channel. We conclude with a summary of open problems

    Oracles and query lower bounds in generalised probabilistic theories

    Get PDF
    We investigate the connection between interference and computational power within the operationally defined framework of generalised probabilistic theories. To compare the computational abilities of different theories within this framework we show that any theory satisfying three natural physical principles possess a well-defined oracle model. Indeed, we prove a subroutine theorem for oracles in such theories which is a necessary condition for the oracle to be well-defined. The three principles are: causality (roughly, no signalling from the future), purification (each mixed state arises as the marginal of a pure state of a larger system), and strong symmetry existence of non-trivial reversible transformations). Sorkin has defined a hierarchy of conceivable interference behaviours, where the order in the hierarchy corresponds to the number of paths that have an irreducible interaction in a multi-slit experiment. Given our oracle model, we show that if a classical computer requires at least n queries to solve a learning problem, then the corresponding lower bound in theories lying at the kth level of Sorkin's hierarchy is n/k. Hence, lower bounds on the number of queries to a quantum oracle needed to solve certain problems are not optimal in the space of all generalised probabilistic theories, although it is not yet known whether the optimal bounds are achievable in general. Hence searches for higher-order interference are not only foundationally motivated, but constitute a search for a computational resource beyond that offered by quantum computation.Comment: 17+7 pages. Comments Welcome. Published in special issue "Foundational Aspects of Quantum Information" in Foundations of Physic

    Information-theoretic approach to quantum error correction and reversible measurement

    Get PDF
    Quantum operations provide a general description of the state changes allowed by quantum mechanics. The reversal of quantum operations is important for quantum error-correcting codes, teleportation, and reversing quantum measurements. We derive information-theoretic conditions and equivalent algebraic conditions that are necessary and sufficient for a general quantum operation to be reversible. We analyze the thermodynamic cost of error correction and show that error correction can be regarded as a kind of ``Maxwell demon,'' for which there is an entropy cost associated with information obtained from measurements performed during error correction. A prescription for thermodynamically efficient error correction is given.Comment: 31 pages, REVTEX, one figure in LaTeX, submitted to Proceedings of the ITP Conference on Quantum Coherence and Decoherenc

    Analysis of the Military Medical Retirement System

    Get PDF
    The purpose of this research was to evaluate the 60 year old military medical retirement system. Specifically, this thesis answered three research questions regarding a comparison of pay between the current system and the societal standard for injury and illness, identification of current segments of the military population disproportionately affected by the current system, and establishment of a minimal standard for medical retirement compensation. Previous research established the societal standard for compensation as the Value of Statistical Life. This thesis compared the current military medical retirement system with the Value of Statistical Life and identified several segments of the military medical retiree population that were adversely affected by the current system. Further, this thesis proposed a new method for calculating medical retirement pay incorporating the societal standard for injury and illness

    Ruling out higher-order interference from purity principles

    Get PDF
    As first noted by Rafael Sorkin, there is a limit to quantum interference. The interference pattern formed in a multi-slit experiment is a function of the interference patterns formed between pairs of slits, there are no genuinely new features resulting from considering three slits instead of two. Sorkin has introduced a hierarchy of mathematically conceivable higher-order interference behaviours, where classical theory lies at the first level of this hierarchy and quantum theory theory at the second. Informally, the order in this hierarchy corresponds to the number of slits on which the interference pattern has an irreducible dependence. Many authors have wondered why quantum interference is limited to the second level of this hierarchy. Does the existence of higher-order interference violate some natural physical principle that we believe should be fundamental? In the current work we show that such principles can be found which limit interference behaviour to second-order, or "quantum-like", interference, but that do not restrict us to the entire quantum formalism. We work within the operational framework of generalised probabilistic theories, and prove that any theory satisfying Causality, Purity Preservation, Pure Sharpness, and Purification---four principles that formalise the fundamental character of purity in nature---exhibits at most second-order interference. Hence these theories are, at least conceptually, very "close" to quantum theory. Along the way we show that systems in such theories correspond to Euclidean Jordan algebras. Hence, they are self-dual and, moreover, multi-slit experiments in such theories are described by pure projectors.Comment: 18+8 pages. Comments welcome. v2: Minor correction to Lemma 5.1, main results are unchange

    Discord and non-classicality in probabilistic theories

    Full text link
    Quantum discord quantifies non-classical correlations in quantum states. We introduce discord for states in causal probabilistic theories, inspired by the original definition proposed in Ref. [17]. We show that the only probabilistic theory in which all states have null discord is classical probability theory. Non-null discord is then not just a quantum feature, but a generic signature of non-classicality.Comment: 5 pages, revtex styl

    Cloning by positive maps in von Neumann algebras

    Get PDF
    We investigate cloning in the general operator algebra framework in arbitrary dimension assuming only positivity instead of strong positivity of the cloning operation, generalizing thus results obtained so far under that stronger assumption. The weaker positivity assumption turns out quite natural when considering cloning in the general C∗-algebra framework
    corecore