757 research outputs found

    Discord and non-classicality in probabilistic theories

    Full text link
    Quantum discord quantifies non-classical correlations in quantum states. We introduce discord for states in causal probabilistic theories, inspired by the original definition proposed in Ref. [17]. We show that the only probabilistic theory in which all states have null discord is classical probability theory. Non-null discord is then not just a quantum feature, but a generic signature of non-classicality.Comment: 5 pages, revtex styl

    Cloning by positive maps in von Neumann algebras

    Get PDF
    We investigate cloning in the general operator algebra framework in arbitrary dimension assuming only positivity instead of strong positivity of the cloning operation, generalizing thus results obtained so far under that stronger assumption. The weaker positivity assumption turns out quite natural when considering cloning in the general C∗-algebra framework

    Local Quantum Measurement and No-Signaling Imply Quantum Correlations

    Get PDF
    We show that, assuming that quantum mechanics holds locally, the finite speed of information is the principle that limits all possible correlations between distant parties to be quantum mechanical as well. Local quantum mechanics means that a Hilbert space is assigned to each party, and then all local positive-operator-valued measurements are (in principle) available; however, the joint system is not necessarily described by a Hilbert space. In particular, we do not assume the tensor product formalism between the joint systems. Our result shows that if any experiment would give nonlocal correlations beyond quantum mechanics, quantum theory would be invalidated even locally.Comment: Published version. 5 pages, 1 figure

    A violation of the uncertainty principle implies a violation of the second law of thermodynamics

    Full text link
    Uncertainty relations state that there exist certain incompatible measurements, to which the outcomes cannot be simultaneously predicted. While the exact incompatibility of quantum measurements dictated by such uncertainty relations can be inferred from the mathematical formalism of quantum theory, the question remains whether there is any more fundamental reason for the uncertainty relations to have this exact form. What, if any, would be the operational consequences if we were able to go beyond any of these uncertainty relations? We give a strong argument that justifies uncertainty relations in quantum theory by showing that violating them implies that it is also possible to violate the second law of thermodynamics. More precisely, we show that violating the uncertainty relations in quantum mechanics leads to a thermodynamic cycle with positive net work gain, which is very unlikely to exist in nature.Comment: 8 pages, revte

    Generalization of entanglement to convex operational theories: Entanglement relative to a subspace of observables

    Full text link
    We define what it means for a state in a convex cone of states on a space of observables to be generalized-entangled relative to a subspace of the observables, in a general ordered linear spaces framework for operational theories. This extends the notion of ordinary entanglement in quantum information theory to a much more general framework. Some important special cases are described, in which the distinguished observables are subspaces of the observables of a quantum system, leading to results like the identification of generalized unentangled states with Lie-group-theoretic coherent states when the special observables form an irreducibly represented Lie algebra. Some open problems, including that of generalizing the semigroup of local operations with classical communication to the convex cones setting, are discussed.Comment: 19 pages, to appear in proceedings of Quantum Structures VII, Int. J. Theor. Phy

    A generalized no-broadcasting theorem

    Get PDF
    We prove a generalized version of the no-broadcasting theorem, applicable to essentially \emph{any} nonclassical finite-dimensional probabilistic model satisfying a no-signaling criterion, including ones with ``super-quantum'' correlations. A strengthened version of the quantum no-broadcasting theorem follows, and its proof is significantly simpler than existing proofs of the no-broadcasting theorem.Comment: 4 page

    Three-dimensionality of space and the quantum bit: an information-theoretic approach

    Full text link
    It is sometimes pointed out as a curiosity that the state space of quantum two-level systems, i.e. the qubit, and actual physical space are both three-dimensional and Euclidean. In this paper, we suggest an information-theoretic analysis of this relationship, by proving a particular mathematical result: suppose that physics takes place in d spatial dimensions, and that some events happen probabilistically (not assuming quantum theory in any way). Furthermore, suppose there are systems that carry "minimal amounts of direction information", interacting via some continuous reversible time evolution. We prove that this uniquely determines spatial dimension d=3 and quantum theory on two qubits (including entanglement and unitary time evolution), and that it allows observers to infer local spatial geometry from probability measurements.Comment: 13 + 22 pages, 9 figures. v4: some clarifications, in particular in Section V / Appendix C (added Example 39

    Confirming the Factors of Professional Readiness in Athletic Training

    Get PDF
    Background: Healthcare professionals such as athletic trainers must be prepared for autonomous practice immediately after graduation. Although certified, new athletic trainers have been shown to have clinical areas of strength and weakness. To better assess professional readiness and improve the preparedness of new athletic trainers, the factors of athletic training professional readiness must be defined. However, limited research exists defining the holistic aspects of professional readiness needed for athletic trainers. Confirming the factors of professional readiness in athletic training could enhance the professional preparation of athletic trainers and result in more highly prepared new professionals. Therefore, the objective of this study was to further explore and confirm the factors of professional readiness in athletic training. Methods: We used a qualitative design based in grounded theory. Participants included athletic trainers with greater than 24 months of experience from a variety of work settings from each district of the National Athletic Trainer’s Association. Participants took the demographic questionnaire electronically using Qualtrics Survey Software (Prove UT). After completing the demographic questionnaire, we selected 20 participants to complete one-on-one interviews using GoToMeeting audiovisual web conferencing software. IMB Statistical Package for the Social Sciences (SPSS, v. 21.0) was used to calculate descriptive statistics for participant demographics. The researcher transcribed all interviews verbatim and a utilized a grounded theory approach during qualitative data analysis. Data were analyzed using a constant comparative analysis as well as open and axial coding. We established trustworthiness by using reflexivity, member checks, and peer reviews. Results: Analysis revealed four overarching themes including management, interpersonal relations, clinical decision-making, and confidence. Conclusion: Athletic trainers should be well-rounded. They must possess communication and organizational skills, the ability to collaborate, value self-reflection and continuing education, and have clinical expertise. Future research should be conducted to finalize a comprehensive model of professional readiness for athletic training, to develop a holistic assessment instrument for athletic training professional readiness, and to explore the preparedness of new athletic trainers as athletic training education transitions to the professional masters degree

    Spectral Conditions on the State of a Composite Quantum System Implying its Separability

    Full text link
    For any unitarily invariant convex function F on the states of a composite quantum system which isolates the trace there is a critical constant C such that F(w)<= C for a state w implies that w is not entangled; and for any possible D > C there are entangled states v with F(v)=D. Upper- and lower bounds on C are given. The critical values of some F's for qubit/qubit and qubit/qutrit bipartite systems are computed. Simple conditions on the spectrum of a state guaranteeing separability are obtained. It is shown that the thermal equilbrium states specified by any Hamiltonian of an arbitrary compositum are separable if the temperature is high enough.Comment: Corrects 1. of Lemma 2, and the (under)statement of Proposition 7 of the earlier version

    Superbroadcasting of harmonic oscillators mixed states

    Get PDF
    We consider the problem of broadcasting quantum information encoded in the displacement parameter for an harmonic oscillator, from N to M>N copies of a thermal state. We show the Weyl-Heisenberg covariant broadcasting map that optimally reduces the thermal photon number, and we prove that it minimizes the noise in conjugate quadratures at the output for general input states. We find that from two input copies broadcasting is feasible, with the possibility of simultaneous purification (superbroadcasting).Comment: 9 pages, 1 figure, revtex4, to appear in the Proceedings of ICQO2006, Minsk, May 200
    corecore