106 research outputs found

    Modes of ejecta emplacement at Martian craters from laboratory experiments of an expanding vortex ring interacting with a particle layer

    No full text
    International audience[1] Ejecta morphologies of many Martian craters indicate fluidized emplacement which differs from ballistic emplacement in dry, airless environments. Double Layered Ejecta craters possess particularly interesting ejecta morphologies: two lobes and radial lineations on their surface, which probably result from gas-dominated radial flow during the emplacement. To examine how a radial flow interacts with surface particles to generate some of the observed morphologies on Mars, we have conducted water tank experiments in which a vortex ring encounters a particle layer. The threshold of particle motion and three interaction modes are described by two dimensionless numbers: particle Shields' parameter and particle Reynolds number. Our results show that gas-dominated flows are possible during cratering and could be used to constrain the ancient Martian environment from observations. Citation: Suzuki, A., I. Kumagai, Y. Nagata, K. Kurita, and O. S. Barnouin-Jha (2007), Modes of ejecta emplacement at Martian craters from laboratory experiments of an expanding vortex ring interacting with a particle layer, Geophys

    Creep stability of the proposed AIDA mission target 65803 Didymos: I. Discrete cohesionless granular physics model

    Full text link
    As the target of the proposed Asteroid Impact & Deflection Assessment (AIDA) mission, the near-Earth binary asteroid 65803 Didymos represents a special class of binary asteroids, those whose primaries are at risk of rotational disruption. To gain a better understanding of these binary systems and to support the AIDA mission, this paper investigates the creep stability of the Didymos primary by representing it as a cohesionless self-gravitating granular aggregate subject to rotational acceleration. To achieve this goal, a soft-sphere discrete element model (SSDEM) capable of simulating granular systems in quasi-static states is implemented and a quasi-static spin-up procedure is carried out. We devise three critical spin limits for the simulated aggregates to indicate their critical states triggered by reshaping and surface shedding, internal structural deformation, and shear failure, respectively. The failure condition and mode, and shear strength of an aggregate can all be inferred from the three critical spin limits. The effects of arrangement and size distribution of constituent particles, bulk density, spin-up path, and interparticle friction are numerically explored. The results show that the shear strength of a spinning self-gravitating aggregate depends strongly on both its internal configuration and material parameters, while its failure mode and mechanism are mainly affected by its internal configuration. Additionally, this study provides some constraints on the possible physical properties of the Didymos primary based on observational data and proposes a plausible formation mechanism for this binary system. With a bulk density consistent with observational uncertainty and close to the maximum density allowed for the asteroid, the Didymos primary in certain configurations can remain geo-statically stable without including cohesion.Comment: 66 pages, 24 figures, submitted to Icarus on 25/Aug/201

    Reducing nonideal to ideal coupling in random matrix description of chaotic scattering: Application to the time-delay problem

    Full text link
    We write explicitly a transformation of the scattering phases reducing the problem of quantum chaotic scattering for systems with M statistically equivalent channels at nonideal coupling to that for ideal coupling. Unfolding the phases by their local density leads to universality of their local fluctuations for large M. A relation between the partial time delays and diagonal matrix elements of the Wigner-Smith matrix is revealed for ideal coupling. This helped us in deriving the joint probability distribution of partial time delays and the distribution of the Wigner time delay.Comment: 4 pages, revtex, no figures; published versio

    AC resistivity of d-wave ceramic superconductors

    Full text link
    We model d-wave ceramic superconductors with a three-dimensional lattice of randomly distributed π\pi Josephson junctions with finite self-inductance. The linear and nonlinear ac resistivity of the d-wave ceramic superconductors is obtained as function of temperature by solving the corresponding Langevin dynamical equations. We find that the linear ac resistivity remains finite at the temperature TpT_p where the third harmonics of resistivity has a peak. The current amplitude dependence of the nonlinear resistivity at the peak position is found to be a power law. These results agree qualitatively with experiments. We also show that the peak of the nonlinear resistivity is related to the onset of the paramagnetic Meissner effect which occurs at the crossover temperature TpT_p, which is above the chiral glass transition temperature TcgT_{cg}.Comment: 7 eps figures, Phys. Rev. B (in press

    The global surface roughness of 25143 Itokawa

    Get PDF
    Surface roughness is an important metric in understanding how the geologic history of an asteroid affects its small-scale topography and it provides an additional means to quantitatively compare one asteroid with another. In this study, we report the first detailed global surface roughness maps of 25143 Itokawa at horizontal scales from 8--32~m. Comparison of the spatial distribution of the surface roughness of Itokawa with 433 Eros, the other asteroid for which this kind of analysis has been possible, indicates that the two asteroids are dominated by different geologic processes. On Itokawa, the surface roughness reflects the results of down-slope activity that moves fine grained material into geopotential lows and leaves large blocks in geopotential highs. On 433 Eros, the surface roughness is controlled by geologically-recent large impact craters. In addition, large longitudinal spatial variations of surface roughness could impact the role of YORP on Itokawa

    Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and implications for aqueous alteration

    Get PDF
    The Noachian terrain west of the Isidis basin hosts a diverse collection of alteration minerals in rocks comprising varied geomorphic units within a 100,000 km2 region in and near the Nili Fossae. Prior investigations in this region by the Observatoire pour l'Minéralogie, l'Eau, les Glaces, et l'Activité (OMEGA) instrument on Mars Express revealed large exposures of both mafic minerals and iron magnesium phyllosilicates in stratigraphic context. Expanding on the discoveries of OMEGA, the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) aboard the Mars Reconnaissance Orbiter (MRO) has found more spatially widespread and mineralogically diverse alteration minerals than previously realized, which represent multiple aqueous environments. Using CRISM near-infrared spectral data, we detail the basis for identification of iron and magnesium smectites (including both nontronite and more Mg-rich varieties), chlorite, prehnite, serpentine, kaolinite, potassium mica (illite or muscovite), hydrated (opaline) silica, the sodium zeolite analcime, and magnesium carbonate. The detection of serpentine and analcime on Mars is reported here for the first time. We detail the geomorphic context of these minerals using data from high-resolution imagers onboard MRO in conjunction with CRISM. We find that the distribution of alteration minerals is not homogeneous; rather, they occur in provinces with distinctive assemblages of alteration minerals. Key findings are (1) a distinctive stratigraphy, in and around the Nili Fossae, of kaolinite and magnesium carbonate in bedrock units always overlying Fe/Mg smectites and (2) evidence for mineral phases and assemblages indicative of low-grade metamorphic or hydrothermal aqueous alteration in cratered terrains. The alteration minerals around the Nili Fossae are more typical of those resulting from neutral to alkaline conditions rather than acidic conditions, which appear to have dominated much of Mars. Moreover, the mineralogic diversity and geologic context of alteration minerals found in the region around the Nili Fossae indicates several episodes of aqueous activity in multiple distinct environments

    Imaging Lunar Craters with the Lucy Long Range Reconnaissance Imager (L'LORRI): A Resolution Test for NASA's Lucy Mission

    Get PDF
    NASA's Lucy mission is designed to better understand the unique population of Trojan asteroids. Trojans were probably captured in Jupiter's L4 and L5 points early in the solar system's evolution and little altered since then. A critical investigation of Lucy is to use its highest-resolution camera, the Lucy Long Range Reconnaissance Imager (L'LORRI), to image Trojans' surfaces to understand their geology and impact crater populations. Through crater statistics, the population of smaller bodies that produced those impacts, relative age differences across the bodies, and other comparative investigations between bodies can be studied. Mapping the crater population to the minimum diameters needed to achieve Lucy's objectives might require image subsampling and deconvolution ("processing") to improve the spatial resolution, a process whereby multiple, slightly offset images are merged to create a single, better-sampled image and deconvolved with L'LORRI's point-spread function. Lucy's first Earth Gravity Assist (EGA1) provided an opportunity to test this process's accuracy using L'LORRI images of the Moon, whose crater population is well characterized and therefore provides ground-truth testing. Specifically, the lunar crater imaging by L'LORRI during EGA1 allowed us to compare crater statistics derived from raw and processed L'LORRI images with ground-truth statistics derived from higher-resolution lunar imaging from other missions. The results indicate the processing can improve impact crater statistics such that features can be identified and measured to ~70% the diameter that they can otherwise be reliably mapped on native L'LORRI images. This test's results will be used in the observation designs for the Lucy flyby targets
    • …
    corecore