124 research outputs found

    Targeted Long-Read Bisulfite Sequencing Identifies Differences in the TERT Promoter Methylation Profiles between TERT Wild-Type and TERT Mutant Cancer Cells

    Full text link
    Background: TERT promoter methylation, located several hundred base pairs upstream of the transcriptional start site, is cancer specific and correlates with increased TERT mRNA expression and poorer patient outcome. Promoter methylation, however, is not mutually exclusive to TERT activating genetic alterations, as predicted for functionally redundant mechanisms. To annotate the altered patterns of TERT promoter methylation and their relationship with gene expression, we applied a Pacific Biosciences-based, long-read, bisulfite-sequencing technology and compared the differences in the methylation marks between wild-type and mutant cancers in an allele-specific manner. Results: We cataloged TERT genetic alterations (i.e., promoter point mutations or structural variations), allele-specific promoter methylation patterns, and allele-specific expression levels in a cohort of 54 cancer cell lines. In heterozygous mutant cell lines, the mutant alleles were significantly less methylated than their silent, mutation-free alleles (p < 0.05). In wild-type cell lines, by contrast, both epialleles were equally methylated to high levels at the TERT distal promoter, but differentially methylated in the proximal regions. ChIP analysis showed that epialleles with the hypomethylated proximal and core promoter were enriched in the active histone mark H3K4me2/3, whereas epialleles that were methylated in those regions were enriched in the repressive histone mark H3K27me3. Decitabine therapy induced biallelic expression in the wild-type cancer cells, whereas the mutant cell lines were unaffected. Conclusions: Long-read bisulfite sequencing analysis revealed differences in the methylation profiles and responses to demethylating agents between TERT wild-type and genetically altered cancer cell lines. The causal relation between TERT promoter methylation and gene expression remains to be established

    The influence of tumor regression, solar elastosis, and patient age on pathologists\u27 interpretation of melanocytic skin lesions.

    Get PDF
    It is not known whether patient age or tumor characteristics such as tumor regression or solar elastosis influence pathologists\u27 interpretation of melanocytic skin lesions (MSLs). We undertook a study to determine the influence of these factors, and to explore pathologist\u27s characteristics associated with the direction of diagnosis. To meet our objective, we designed a cross-sectional survey study of pathologists\u27 clinical practices and perceptions. Pathologists were recruited from diverse practices in 10 states in the United States. We enrolled 207 pathologist participants whose practice included the interpretation of MSLs. Our findings indicated that the majority of pathologists (54.6%) were influenced toward a less severe diagnosis when patients were70 years of age, or by the presence of tumor regression or solar elastosis (58.5%, 71.0%, and 57.0%, respectively). Generally, pathologists with dermatopathology board certification and/or a high caseload of MSLs were more likely to be influenced, whereas those with more years\u27 experience interpreting MSL were less likely to be influenced. Our findings indicate that the interpretation of MSLs is influenced by patient age, tumor regression, and solar elastosis; such influence is associated with dermatopathology training and higher caseload, consistent with expertise and an appreciation of lesion complexity

    So close, yet so far : discrepancies between uveal and other melanomas. A Position Paper from UM Cure 2020

    Get PDF
    Despite much progress in our understanding of uveal melanoma (UM) over the past decades, this rare tumour is still often misclassified. Although UM, like other melanomas, is very probably derived from melanocytes, it is drastically different from cutaneous melanoma and most other melanoma subtypes in terms of epidemiology, aetiology, biology and clinical features, including an intriguing metastatic hepatotropism. UM carries distinctive prognostic chromosome alterations, somatic mutations and gene expression profiles, allowing an active tailored surveillance strategy and dedicated adjuvant clinical trials. There is no standard systemic treatment for disseminated UM at present. In contrast to cutaneous melanoma, UMs are not BRAF-mutated, thus curtailing the use of B-Raf inhibitors. Although these tumours are characterised by some immune infiltrates, immune checkpoint inhibitors are rarely effective, possibly due to a low mutation burden. UM patients across the world not only face rare cancer-related issues (e.g., specific management strategies, access to information and to expert centres), but also specific UM problems, which can be exacerbated by the common misconception that it is a subtype of cutaneous melanoma. As a European Consortium dedicated to research on UM and awareness on the disease, “UM Cure 2020” participants urge medical oncologists, pharmaceutical companies, and regulatory agencies to acknowledge UM as a melanoma with specific issues, in order to accelerate the development of new therapies for patients

    A Multicenter Study Validates the WHO 2022 Classification for Conjunctival Melanocytic Intraepithelial Lesions With Clinical and Prognostic Relevance

    Get PDF
    Several nomenclature and grading systems have been proposed for conjunctival melanocytic intraepithelial lesions (C-MIL). The fourth "WHO Classification of Eye Tumors" (WHO-EYE04) proposed a C-MIL classification, capturing the progression of noninvasive neoplastic melanocytes from low- to high-grade lesions, onto melanoma in situ (MIS), and then to invasive melanoma. This proposal was revised to the WHO-EYE05 C-MIL system, which simplified the high-grade C-MIL, whereby MIS was subsumed into high-grade C-MIL. Our aim was to validate the WHO-EYE05 C-MIL system using digitized images of C-MIL, stained with hematoxylin and eosin and immunohistochemistry. However, C-MIL cases were retrieved from 3 supraregional ocular pathology centers. Adequate conjunctival biopsies were stained with hematoxylin and eosin, Melan-A, SOX10, and PReferentially expressed Antigen in Melanoma. Digitized slides were uploaded on the SmartZoom platform and independently scored by 4 ocular pathologists to obtain a consensus score, before circulating to 14 expert eye pathologists for independent scoring. In total, 105 cases from 97 patients were evaluated. The initial consensus diagnoses using the WHO-EYE04 C-MIL system were as follows: 28 benign conjunctival melanoses, 13 low-grade C-MIL, 37 high-grade C-MIL, and 27 conjunctival MIS. Using this system resulted in 93% of the pathologists showing only fair-to-moderate agreement (kappa statistic) with the consensus score. The WHO-EYE05 C-MIL system (with high-grade C-MIL and MIS combined) improved consistency between pathologists, with the greatest level of agreement being seen with benign melanosis (74.5%) and high-grade C-MIL (85.4%). Lowest agreements remained between pathologists for low-grade C-MIL (38.7%). Regarding WHO-EYE05 C-MIL scoring and clinical outcomes, local recurrences of noninvasive lesions developed in 8% and 34% of the low- and high-grade cases. Invasive melanoma only occurred in 47% of the cases that were assessed as high-grade C-MIL. This extensive international collaborative study is the first to undertake a comprehensive review of the WHO-EYE05 C-MIL scoring system, which showed good interobserver agreement and reproducibility.</p

    Definition of Biologically Distinct Groups of Conjunctival Melanomas According to Etiological Factors and Implications for Precision Medicine

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-07-26, pub-electronic 2021-07-30Publication status: PublishedFunder: European Commission; Grant(s): 667787Funder: European Research Council; Grant(s): ERC-ADG-2014 671262Funder: Cancer Research UK; Grant(s): A27412 and A22902Funder: Institut Curie; Grant(s): #Funder: Ligue Contre le Cancer; Grant(s): #Funder: Institut National de la Santé et de la Recherche Médicale; Grant(s): #Conjunctival melanoma (ConjMel) is a potentially deadly ocular melanoma, originating from partially sunlight-exposed mucosa. We explored the mutational landscape of ConjMel and studied the correlation with etiological factors. We collected 47 primary ConjMel samples and performed next-generation sequencing of 400 genes. Hotspot mutations in BRAF, NRAS, HRAS, and KIT were observed in 16 (34%), 5 (11%), 2, and 2 cases, respectively. Patients with BRAF and CDKN2A-mutated ConjMel tended to be younger while the NF1-mutated one tended to be older. The eight tumors arising from nevi were enriched in CTNNB1 mutations (63% vs. 8%; Fisher’s exact p-test = 0.001) compared to non-nevi ConjMel and five were devoid of BRAF, RAS, NF1, or KIT mutations, suggesting a specific oncogenic process in these tumors. The two KIT-mutated cases carried SF3B1 mutations and were located on sun-protected mucosa, a genotype shared with genital and anorectal mucosal melanomas. Targetable mutations were observed in ERBB2, IDH1, MET, and MAP2K1 (one occurrence each). Mutational landscape of ConjMel characterizes distinct molecular subtypes with oncogenic drivers common with mucosal and skin melanomas. CTNNB1 mutations were associated with nevus-derived ConjMel. Concomitant KIT/SF3B1 mutations in sun-protected cases suggest a common tumorigenic process with genital and anorectal mucosal melanomas

    Revision of the Melanocytic Pathology Assessment Tool and Hierarchy for Diagnosis Classification Schema for Melanocytic Lesions: A Consensus Statement

    Full text link
    IMPORTANCE A standardized pathology classification system for melanocytic lesions is needed to aid both pathologists and clinicians in cataloging currently existing diverse terminologies and in the diagnosis and treatment of patients. The Melanocytic Pathology Assessment Tool and Hierarchy for Diagnosis (MPATH-Dx) has been developed for this purpose. OBJECTIVE To revise the MPATH-Dx version 1.0 classification tool, using feedback from dermatopathologists participating in the National Institutes of Health-funded Reducing Errors in Melanocytic Interpretations (REMI) Study and from members of the International Melanoma Pathology Study Group (IMPSG). EVIDENCE REVIEW Practicing dermatopathologists recruited from 40 US states participated in the 2-year REMI study and provided feedback on the MPATH-Dx version 1.0 tool. Independently, member dermatopathologists participating in an IMPSG workshop dedicated to the MPATH-Dx schema provided additional input for refining the MPATH-Dx tool. A reference panel of 3 dermatopathologists, the original authors of the MPATH-Dx version 1.0 tool, integrated all feedback into an updated and refined MPATH-Dx version 2.0. FINDINGS The new MPATH-Dx version 2.0 schema simplifies the original 5-class hierarchy into 4 classes to improve diagnostic concordance and to provide more explicit guidance in the treatment of patients. This new version also has clearly defined histopathological criteria for classification of classes I and II lesions; has specific provisions for the most frequently encountered low-cumulative sun damage pathway of melanoma progression, as well as other, less common World Health Organization pathways to melanoma; provides guidance for classifying intermediate class II tumors vs melanoma; and recognizes a subset of pT1a melanomas with very low risk and possible eventual reclassification as neoplasms lacking criteria for melanoma. CONCLUSIONS AND RELEVANCE The implementation of the newly revised MPATH-Dx version 2.0 schema into clinical practice is anticipated to provide a robust tool and adjunct for standardized diagnostic reporting of melanocytic lesions and management of patients to the benefit of both health care practitioners and patients

    Dermatologist-like explainable AI enhances trust and confidence in diagnosing melanoma

    Full text link
    Although artificial intelligence (AI) systems have been shown to improve the accuracy of initial melanoma diagnosis, the lack of transparency in how these systems identify melanoma poses severe obstacles to user acceptance. Explainable artificial intelligence (XAI) methods can help to increase transparency, but most XAI methods are unable to produce precisely located domain-specific explanations, making the explanations difficult to interpret. Moreover, the impact of XAI methods on dermatologists has not yet been evaluated. Extending on two existing classifiers, we developed an XAI system that produces text and region based explanations that are easily interpretable by dermatologists alongside its differential diagnoses of melanomas and nevi. To evaluate this system, we conducted a three-part reader study to assess its impact on clinicians' diagnostic accuracy, confidence, and trust in the XAI-support. We showed that our XAI's explanations were highly aligned with clinicians' explanations and that both the clinicians' trust in the support system and their confidence in their diagnoses were significantly increased when using our XAI compared to using a conventional AI system. The clinicians' diagnostic accuracy was numerically, albeit not significantly, increased. This work demonstrates that clinicians are willing to adopt such an XAI system, motivating their future use in the clinic
    corecore