21,332 research outputs found
Electronic noise in charge sensitive preamplifiers for X-ray spectroscopy and the benefits of a SiC input JFET
A comprehensive summary and analysis of the electronic noise affecting the resolution of X-ray, γ-ray and particle counting spectroscopic systems which employ semiconductor detectors and charge sensitive preamplifiers is presented. The noise arising from the input transistor of the preamplifier and its contribution to the total noise is examined. A model for computing the noise arising from the front-end transistor is also presented and theoretical calculations comparing the noise contribution of transistors made of different materials are discussed, emphasizing the advantages of wide bandgap transistor technology
Residual Stresses in Layered Manufacturing
Layered Manufacturing processes accumulate residual stresses during materialbuildup. These stresses may cause part warping and layer delamination. This paper presents
work done on investigating residual stress accumulation andp(i,rt distortion of Layered
Manufactured artifacts. A simple analyticaLmodel was developed and used to determine how the number of layers and the layer thickness influences part warping. Resllits
show that thin layers produce lower part deflection as compared with depositing fewer
and thicker layers. In addition to the analytical work, a finite element model wasdeveloped and used to illvestigate the deposition pattern's influence on. the part deflection.
Finite element model and corresponding experimental analysis showed that the geometry of the deposition pattern significantly affects the resulting part distortion. This
finite element model was also used to investigate an inter-layer surface defect,. known
as the Christmas Thee Step, that is associated with Shape Deposition Manufacturing.
Results indicate that the features of this defect are influenced only by the material
deposited close. to the part·surface and the particular material deposited. The step is
not affected by the deposition pattern.Mechanical Engineerin
Antisymmetric multi-partite quantum states and their applications
Entanglement is a powerful resource for processing quantum information. In
this context pure, maximally entangled states have received considerable
attention. In the case of bipartite qubit-systems the four orthonormal
Bell-states are of this type. One of these Bell states, the singlet Bell-state,
has the additional property of being antisymmetric with respect to particle
exchange. In this contribution we discuss possible generalizations of this
antisymmetric Bell-state to cases with more than two particles and with
single-particle Hilbert spaces involving more than two dimensions. We review
basic properties of these totally antisymmetric states. Among possible
applications of this class of states we analyze a new quantum key sharing
protocol and methods for comparing quantum states
GaAsP on GaP top solar cells
GaAsP on GaP top solar cells as an attachment to silicon bottom solar cells are being developed. The GaAsP on GaP system offers several advantages for this top solar cell. The most important is that the gallium phosphide substrate provides a rugged, transparent mechanical substrate which does not have to be removed or thinned during processing. Additional advantages are that: (1) gallium phosphide is more oxidation resistant than the III-V aluminum compounds, (2) a range of energy band gaps higher than 1.75 eV is readily available for system efficiency optimization, (3) reliable ohmic contact technology is available from the light-emitting diode industry, and (4) the system readily lends itself to graded band gap structures for additional increases in efficiency
N/P GaAs concentrator solar cells with an improved grid and bushbar contact design
The major requirements for a solar cell used in space applications are high efficiency at AMO irradiance and resistance to high energy radiation. Gallium arsenide, with a band gap of 1.43 eV, is one of the most efficient sunlight to electricity converters (25%) when the the simple diode model is used to calculate efficiencies at AMO irradiance, GaAs solar cells are more radiation resistant than silicon solar cells and the N/P GaAs device has been reported to be more radiation resistant than similar P/N solar cells. This higher resistance is probably due to the fact that only 37% of the current is generated in the top N layer of the N/P cell compared to 69% in the top layer of a P/N solar cell. This top layer of the cell is most affected by radiation. It has also been theoretically calculated that the optimized N/P device will prove to have a higher efficiency than a similar P/N device. The use of a GaP window layer on a GaAs solar cell will avoid many of the inherent problems normally associated with a GaAlAs window while still proving good passivation of the GaAs surface. An optimized circular grid design for solar cell concentrators has been shown which incorporates a multi-layer metallization scheme. This multi-layer design allows for a greater current carrying capacity for a unit area of shading, which results in a better output efficiency
Retrodiction of Generalised Measurement Outcomes
If a generalised measurement is performed on a quantum system and we do not
know the outcome, are we able to retrodict it with a second measurement? We
obtain a necessary and sufficient condition for perfect retrodiction of the
outcome of a known generalised measurement, given the final state, for an
arbitrary initial state. From this, we deduce that, when the input and output
Hilbert spaces have equal (finite) dimension, it is impossible to perfectly
retrodict the outcome of any fine-grained measurement (where each POVM element
corresponds to a single Kraus operator) for all initial states unless the
measurement is unitarily equivalent to a projective measurement. It also
enables us to show that every POVM can be realised in such a way that perfect
outcome retrodiction is possible for an arbitrary initial state when the number
of outcomes does not exceed the output Hilbert space dimension. We then
consider the situation where the initial state is not arbitrary, though it may
be entangled, and describe the conditions under which unambiguous outcome
retrodiction is possible for a fine-grained generalised measurement. We find
that this is possible for some state if the Kraus operators are linearly
independent. This condition is also necessary when the Kraus operators are
non-singular. From this, we deduce that every trace-preserving quantum
operation is associated with a generalised measurement whose outcome is
unambiguously retrodictable for some initial state, and also that a set of
unitary operators can be unambiguously discriminated iff they are linearly
independent. We then examine the issue of unambiguous outcome retrodiction
without entanglement. This has important connections with the theory of locally
linearly dependent and locally linearly independent operators.Comment: To appear in Physical Review
Combining real and virtual Higgs boson mass constraints
Within the framework of the standard model we observe that there is a
significant discrepancy between the most precise boson decay asymmetry
measurement and the limit from direct searches for Higgs boson production.
Using methods inspired by the Particle Data Group we explore the possible
effect on fits of the Higgs boson mass. In each case the central value and the
95% confidence level upper limit increase significantly relative to the
conventional fit. The results suggest caution in drawing conclusions about the
Higgs boson mass from the existing data.Comment: 11 pages, Latex. Citations are added and paper is otherwise
reconciled with version to be published in Physical Review Letter
- …