17,365 research outputs found

    Minimum-error discrimination between three mirror-symmetric states

    Get PDF
    We present the optimal measurement strategy for distinguishing between three quantum states exhibiting a mirror symmetry. The three states live in a two-dimensional Hilbert space, and are thus overcomplete. By mirror symmetry we understand that the transformation {|+> -> |+>, |-> -> -|->} leaves the set of states invariant. The obtained measurement strategy minimizes the error probability. An experimental realization for polarized photons, realizable with current technology, is suggested.Comment: 4 pages, 2 figure

    On the dragging of light by a rotating medium

    Get PDF
    When light is passing through a rotating medium the optical polarization is rotated. Recently, it has been reasoned that this rotation applies also to the transmitted image. We examine these two phenomena by extending an analysis of Player (Player 1976 Proc. R. Soc. A 349, 441-445) to general electromagnetic fields. We find that in this more general case, the wave equation inside the rotating medium has to be amended by a term which is connected to the orbital angular momentum (OAM) of the light. We show that optical spin and OAM account for the rotation of the polarization and the rotation of the transmitted image, respectively

    Dissipation control in cavity QED with oscillating mode structures

    Get PDF
    We demonstrate how a time-dependent dissipative environment may be used as a tool for controlling the quantum state of a two-level atom. In our model system the frequency and coupling strength associated with microscopic reservoir modes are modulated, while the principal features of the reservoir structure remain fixed in time. Physically, this may be achieved by containing a static atom-cavity system inside an oscillating external bath. We show that it is possible to dynamically decouple the atom from its environment, despite the fact that the two remain resonant at all times. This can lead to Markovian dynamics, even for a strong atom-bath coupling, as the atomic decay becomes inhibited into all but a few channels; the reservoir occupation spectrum consequently acquires a sideband structure, with peaks separated by the frequency of the environmental modulation. The reduction in the rate of spontaneous emission using this approach can be significantly greater than could be achieved with an oscillatory atom-bath detuning using the same parameters

    Angular EPR paradox

    Full text link
    The violation of local uncertainty relations is a valuable tool for detecting entanglement, especially in multi-dimensional systems. The orbital angular momentum of light provides such a multi-dimensional system. We study quantum correlations for the conjugate variables of orbital angular momentum and angular position. We determine an experimentally testable criterion for the demonstration of an angular version of the EPR paradox. For the interpretation of future experimental results from our proposed setup, we include a model for the indeterminacies inherent to the angular position measurement. For this measurement angular apertures are used to determine the probability density of the angle. We show that for a class of aperture functions a demonstration of an angular EPR paradox, according to our criterion, is to be expected.Comment: 21 pages, 9 figures, to be published in J. Mod. Opt. special issue on quantum imagin

    Directional correlations in quantum walks with two particles

    Get PDF
    Quantum walks on a line with a single particle possess a classical analogue. Involving more walkers opens up the possibility of studying collective quantum effects, such as many-particle correlations. In this context, entangled initial states and the indistinguishability of the particles play a role. We consider the directional correlations between two particles performing a quantum walk on a line. For non-interacting particles, we find analytic asymptotic expressions and give the limits of directional correlations. We show that by introducing delta-interaction between the particles, one can exceed the limits for non-interacting particles

    Matter-wave grating distinguishing conservative and dissipative interactions

    Get PDF
    We propose an optical grating for matter waves that separates molecules depending on whether their interaction with the light is conservative or dissipative. Potential applications include fundamental tests of quantum mechanics, measurement of molecular properties and the ability to selectively prepare matter waves with different internal temperatures

    GaAsP on GaP top solar cells

    Get PDF
    GaAsP on GaP top solar cells as an attachment to silicon bottom solar cells are being developed. The GaAsP on GaP system offers several advantages for this top solar cell. The most important is that the gallium phosphide substrate provides a rugged, transparent mechanical substrate which does not have to be removed or thinned during processing. Additional advantages are that: (1) gallium phosphide is more oxidation resistant than the III-V aluminum compounds, (2) a range of energy band gaps higher than 1.75 eV is readily available for system efficiency optimization, (3) reliable ohmic contact technology is available from the light-emitting diode industry, and (4) the system readily lends itself to graded band gap structures for additional increases in efficiency

    On the Quantum Phase Operator for Coherent States

    Full text link
    In papers by Lynch [Phys. Rev. A41, 2841 (1990)] and Gerry and Urbanski [Phys. Rev. A42, 662 (1990)] it has been argued that the phase-fluctuation laser experiments of Gerhardt, B\"uchler and Lifkin [Phys. Lett. 49A, 119 (1974)] are in good agreement with the variance of the Pegg-Barnett phase operator for a coherent state, even for a small number of photons. We argue that this is not conclusive. In fact, we show that the variance of the phase in fact depends on the relative phase between the phase of the coherent state and the off-set phase Ï•0\phi_0 of the Pegg-Barnett phase operator. This off-set phase is replaced with the phase of a reference beam in an actual experiment and we show that several choices of such a relative phase can be fitted to the experimental data. We also discuss the Noh, Foug\`{e}res and Mandel [Phys.Rev. A46, 2840 (1992)] relative phase experiment in terms of the Pegg-Barnett phase taking post-selection conditions into account.Comment: 8 pages, 8 figures. Typographical errors and misprints have been corrected. The outline of the paper has also been changed. Physica Scripta (in press
    • …
    corecore