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Abstract. Quantum walks on a line with a single particle possess a classical
analogue. Involving more walkers opens up the possibility of studying collective
quantum effects, such as many-particle correlations. In this context, entangled
initial states and the indistinguishability of the particles play a role. We consider
the directional correlations between two particles performing a quantum walk
on a line. For non-interacting particles, we find analytic asymptotic expressions
and give the limits of directional correlations. We show that by introducing
δ-interaction between the particles, one can exceed the limits for non-interacting
particles.
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1. Introduction

Quantum walks were introduced [1] as a generalization of a classical random walk [2] to
a unitary evolution of a quantum particle. The time evolution can be either discrete [3] or
continuous [4]. The connection between discrete-time and continuous-time quantum walks
has been established for a walk on a line [5, 6] and, more recently, for walks on arbitrary
graphs [7]. It has been shown that both continuous- [8] and discrete-time [9] quantum walks
can be regarded as a universal computational primitive. Continuous-time quantum walks have
been extensively studied in the context of coherent energy transfer in networks [10]. Both
continuous- and discrete-time quantum walks have found promising applications in designing
quantum algorithms [11]. Indeed, a number of algorithms based on quantum walks have been
proposed [12]–[21]; for a review see [22].

Various properties of quantum walks have been analyzed, in particular their asymptotic
behavior [23]–[25] and the effect of the initial conditions [26]–[28]; for a review see [29].
Due to the wave nature of quantum walks, a number of counter-intuitive phenomena have been
observed, including infinite hitting times [30, 31] and localization [32]–[38]. The properties of
random walks on infinite regular lattices are closely related to the dimensionality of the lattice.
It is well known that a classical random walk returns to the origin with certainty in dimensions
one and two, while in higher dimensions the probability of return (Pólya number) is strictly less
than unity [39]. For the discrete-time quantum walk, the recurrence properties are determined
not only by the dimension but also by the initial state and the coin operator, leading to rich
behavior [40]–[45]. The closely related property of persistence has been studied in [46].

The extensive theoretical studies have stimulated a search for experimental imple-
mentations of quantum walks. Various different schemes based on ion traps [47], optical
lattices [48, 49], cavity quantum electrodynamics [50], optical cavities [51] or Bose–Einstein
condensate [52] have been proposed. Recently, a discrete-time quantum walk on a line has been
realized in a variety of physical systems including cold atoms [53], trapped ions [54, 55] and
photons [56, 57].

Most of the studies performed to date considered quantum walks with a single particle.
A natural extension of the field of quantum walks is to involve more particles. This
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unlocks the additional features offered by quantum mechanics, such as entanglement and
indistinguishability, which are not available in classical random walks. A quantum walk on a line
with two entangled particles has been introduced in [58] and the meeting problem in this model
has been analyzed [59]. A physical implementation of this model based on linear optics has been
proposed in [60]. Quantum walks with two particles have been applied to the graph isomorphism
problem [61, 62]. Entanglement generation in a special two-particle quantum walk on a line
has been investigated in [63]. Recently, the first successful experiment with two particles on a
line has been reported [64]. A framework for multi-particle quantum walks on rather arbitrary
graphs has been proposed in [65]. The study of quantum walks with more particles on a line is
motivated by the fact that the single-particle walk in this case can be considered as a classical
interference phenomenon [66]. We note that walks on higher-dimensional lattices cannot be
considered classical in this sense, since the resources needed for simulating the quantum walk
scale exponentially.

In this paper, we investigate the non-classical effects in the two-particle discrete-time
quantum walk on a line by asking the question: How is the directional correlation affected
by the quantum nature of the particles? In particular, we analyze the probability Ps of finding
both particles on the same (negative or positive) half-line. We derive analytical expressions for
the asymptotic value of this probability in dependence on the initial coin state. Classically, a
symmetric random walk has a fixed value of the probability Ps equal to 1/2. We first consider
two quantum particles on a line starting the walk in a separable state. We determine the limits
for the directional correlations and show that, for any value within these limits, one can design
a corresponding separable initial state. Next, we prove that the bounds cannot be exceeded by
considering entanglement in the initial state. On the other hand, introducing quantum walks
with δ-interactions, we show that the directional correlations can be increased above the limit
for non-interacting particles.

This paper is organized as follows. We briefly review the quantum walk on a line with
one and two non-interacting particles in section 2 and introduce the probability of being on the
same side of the lattice Ps. In section 3, we analyze the probability Ps for separable initial states.
Entangled initial states are considered in section 4. In section 5, we study the influence of the
indistinguishability on the probability Ps. In section 6, we introduce the concept of δ-interacting
quantum walks to break the limits of non-interacting quantum walks. We summarize our results
in section 7.

2. A quantum walk on a line with one and two particles

Let us first briefly review the quantum walk of a single particle on a line (see e.g. [67] for a
more detailed introduction). The Hilbert space of the particle is given by a tensor product

H=HP ⊗HC

of the position space

HP = `2(Z)= Span {|m〉| m ∈ Z}

and the two-dimensional (2D) coin space

HC = Span {|L〉, |R〉} .
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We consider a particle starting the quantum walk from the origin, i.e. the initial state has the
form

|ψ(0)〉 = |0〉 ⊗ |ψC〉,

where |ψC〉 denotes the initial state of the coin. After t steps of the quantum walk, the state of
the particle is given by

|ψ(t)〉 ≡

∑
m

(ψL(m, t)|m〉|L〉 +ψR(m, t)|m〉|R〉)= U t
|ψ(0)〉, (1)

where the unitary propagator U has the form

U = S (I ⊗ C). (2)

The coin operator C flips the state of the coin before the particle is displaced. In principle, C
can be an arbitrary unitary operation on the coin space HC. We choose the most studied case of
the Hadamard coin, denoted by CH, which is defined by its action on the basis states,

CH|L〉 =
1

√
2
(|L〉 + |R〉), CH|R〉 =

1
√

2
(|L〉 − |R〉).

After the coin flip, the step operator S displaces the particle from its current position according
to its coin state

S|m〉|L〉 −→ |m − 1〉|L〉, S|m〉|R〉 −→ |m + 1〉|R〉.

The coefficients ψL ,(R)(m, t) in (1) represent the probability amplitudes of finding the particle
at position m after t steps of the quantum walk with the coin state |L(R)〉. The probability
distribution generated by the quantum walk is given by

p(m, t)= |〈m|〈L|ψ(t)〉|2 + |〈m|〈R|ψ(t)〉|2 = |ψL(m, t)|2 + |ψR(m, t)|2.

An extension of the formalism described above to two distinguishable particles has been
given in [58]. One should consider the bipartite Hilbert state as a tensor product

H12 =H1 ⊗H2

of the single-particle Hilbert spaces. We consider non-interacting particles, i.e. their time
evolution is independent. Hence, the propagator of the two-particle quantum walk can be written
in a factorized form,

U12 = U1 ⊗ U2, (3)

where U1 (U2) is the propagator of the first (second) particle given by equation (2). Note that
this factorized time evolution cannot increase entanglement between the particles. In this paper,
we consider particles starting from the same lattice point (the origin). Hence, the initial state of
the two-particle quantum walk has the shape

|9(0)〉 = |0, 0〉 ⊗ |9C〉,

where |9C〉 is the initial coin state of the two particles.
Let us first consider the case when the initial coin state is separable, i.e.

|9C〉 = |ψ1〉 ⊗ |ψ2〉. (4)

Since entanglement is not induced in the process of time evolution, the two-particle state
remains factorized and the joint probability distribution p(m, n, t) of finding the first particle
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at the mth and the second at the nth site at time t is reduced to the product of single-particle
distributions,

p(m, n, t)= p1(m, t) · p2(n, t). (5)

Here, pi(m, t) is the probability distribution of a single-particle quantum walk given that the
initial coin state was |ψi〉. Hence, the two-particle quantum walk with initially separable coin
state is fully determined by the single-particle quantum walk.

We turn to the situation when the initial coin state |9C〉 does not factorize. In such a
case, the joint probability distribution p(m, n, t) cannot be written in a product form (5).
Nevertheless, we can map the two-particle walk on a line to a quantum walk of a single particle
on a square lattice. Indeed, we can write the two-particle propagator (3) in the following form,

U12 = S12(IP12 ⊗ (CH ⊗ CH)), (6)

where IP12 is the identity on the joint position space and the joint step operator S12 is given
by the tensor product of the single-particle step operators Si . Relation (6) implies that we can
consider the two-particle propagator U12 as a propagator of single-particle walk on a plane with
the coin given by the tensor product of two Hadamard operators. Hence, the two quantum walks
in consideration are equivalent. This correspondence allows us to treat the joint probability
distribution of the two-particle walk with the tools developed for the single-particle quantum
walks.

Finally, let us briefly comment on a quantum walk with indistinguishable particles. It is
natural to use the second quantization formalism. We denote the bosonic creation operators
by â†

(m,i) and the fermionic creation operators by b̂†
(n, j), e.g. â†

(m,i) creates one bosonic particle
at position m with the internal state |i〉, i = L , R. The dynamics of the quantum walk with
indistinguishable particles is defined on a one-particle level, i.e. a single step is given by the
following transformation of the creation operators,

â†
(m,L) −→

1
√

2

(
â†
(m−1,L) + â†

(m+1,R)

)
, â†

(m,R) −→
1

√
2

(
â†
(m−1,L) − â†

(m+1,R)

)
,

for bosonic particles, and similarly for fermions. The difference is that the bosonic operators
fulfill the commutation relations[

â(m,i), â(n, j)

]
= 0,

[
â(m,i), â†

(n, j)

]
= δmnδi j , (7)

while the fermionic operators satisfy the anti-commutation relations{
b̂(m,i), b̂(n, j)

}
= 0,

{
b̂(m,i), b̂†

(n, j)

}
= δmnδi j . (8)

Since the dynamics are defined on a single-particle level, one can describe the state of the
two indistinguishable particles after t steps of the quantum walk in terms of the single-particle
probability amplitudes (see [59] for a more detailed discussion).

In this paper, we focus on the directional correlations between the two particles. We
quantify this property by the probability Ps that both particles are found after t steps of the
quantum walk on the same side of the line. For distinguishable particles it is given by

Ps(t)=

0∑
m=−t

0∑
n=−t

p(m, n, t) +
t∑

m=1

t∑
n=1

p(m, n, t). (9)
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For indistinguishable particles p(m, n, t)≡ p(n,m, t), i.e. these two probabilities correspond
to the same physical event. Hence, the sums in (9) have to be restricted over an ordered pair
(m, n) with m > n, i.e.

Ps(t)=

0∑
n=−t

(
0∑

m=n

p(m, n, t)

)
+

t∑
n=1

(
t∑

m=n

p(m, n, t)

)
. (10)

In particular, we will be interested in the asymptotic limits of the probability Ps in its dependence
on the initial coin state of the two particles. We consider both separable and entangled coin
states, as well as indistinguishability of the particles, in the following sections.

3. Separable initial states

Let us now specify the probability Ps for two distinguishable particles that start the quantum
walk with a separable coin state (4). As discussed in the previous section, the joint probability
distribution p(m, n, t) factorizes (5). Therefore, the probability of being on the same side of the
lattice Ps simplifies to

Ps(t)= P−

1 (t) · P−

2 (t)+ P+
1 (t) · P+

2 (t). (11)

Here, we have denoted by P±

i (t) the probability that the particle that has started the quantum
walk with the coin state |ψi〉 is on the positive or negative half-axis after t steps, i.e.

P−

i (t)=

0∑
m=−t

pi(m, t), P+
i (t)=

t∑
m=1

pi(m, t).

In figure 1, we plot the course of the probability Ps(t) with the number of steps t . To
unravel the dependence on the initial coin state |9C〉, we consider three cases:—(i) |9C〉 =

|L〉 ⊗ |R〉 (black dots), (ii) |9C〉 = |L〉 ⊗ |L〉 (open circles), and (iii) |9C〉 =
1

√
2
(|L〉 + i |R〉)⊗

1
√

2
(|L〉 + i |R〉) (open diamonds). We find that after some initial oscillations, the probability Ps

quickly approaches steady values, which are determined by the initial coin state.
Let us now determine the asymptotic value of the probability Ps in dependence of the initial

coin state. Consider a general separable coin state of the form

|9C〉 = (a1|L〉 + b1|R〉)⊗ (a2|L〉 + b2|R〉).

The asymptotic probability distribution for a single particle is given by the equation [24]

p(x, t, ai , bi)=
1 − (x/t)((ai + bi)ai + (ai − bi)bi)

π t
√

1 − 2(x2/t2)(1 − (x2/t2))
. (12)

The probability that the particle is on the negative or positive half-axis is obtained by integrating
the probability density over the corresponding interval

P−

i (ai , bi)=
∫ 0

−t/
√

2 p(x, t, ai , bi) dx =
1
4(2 + ((ai + bi)ai + (ai − bi)bi)),

P+
i (ai , bi)=

∫ t/
√

2
0 p(x, t, ai , bi) dx =

1
4(2 − ((ai + bi)ai + (ai − bi)bi)).

(13)

Note that within the approximation of equation (12), the resulting integrals are time
independent, i.e. we immediately obtain the asymptotic values of the probabilities P±

i . This
is due to the fact that the asymptotic probability density depends only on the ratio x/t .
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Figure 1. The probability Ps that two distinguishable particles performing a
quantum walk on a line end on the same side as a function of time. Both
particles start the quantum walk from the origin. As the initial coin state |9C〉,
we choose one of the three factorized states—(i) |L〉 for the first particle and
|R〉 for the second particle (black dots), (ii) |L〉 for both particles (open circles)
and (iii) |ψS〉 ≡

1
√

2
(|L〉 + i |R〉) for both particles (open diamonds). We find

that for the initial coin state (i), the particles are more likely to be on the
opposite side, since Ps < 1/2. Indeed, due to the choice of the coin state |L R〉

the probability distribution of the first particle is biased to the left, while the
probability distribution of the second particle is biased to the right. On the other
hand, for the initial state |L L〉, both probability distributions are biased to the
left. Hence, the particles are more likely to be found on the same side. Finally,
for the initial state (iii), which results in the symmetric single-particle probability
distribution, the particles are equally likely to be on the same or the opposite side
of the line. The asymptotic values of Ps for all three initial states are in agreement
with the analytic estimation of equation (15).

Inserting the results of (13) into equation (11), we find that the probability Ps is given by

P (sep)
s =

1
8

(
4 +

(
(a1 + b1)a1 + (a1 − b1)b1

) (
(a2 + b2)a2 + (a2 − b2)b2

))
. (14)

In particular, for the initial states (i)–(iii) considered in figure 1, we find the asymptotic values

P (L R)
s ≡ Ps(1, 0, 0, 1)=

3
8 , P (L L)

s ≡ Ps(1, 0, 1, 0)=
5
8 ,

P (S)
s ≡ Ps

(
1

√
2
, i

√
2
, 1

√
2
, i

√
2

)
=

1
2 .

(15)

These results are in perfect agreement with the numerical simulations presented in figure 1.
Let us now analyze the probability P (sep)

s in more detail. First, we recast formula (14) in
a simpler form by a change in the basis of the coin space. Consider the basis formed by the
eigenstates of the Hadamard coin

CH|χ±
〉 = ±|χ±

〉,

which have the following expression in the standard basis,

|χ±
〉 =

√
2 ±

√
2

2
|L〉 ±

√
2 ∓

√
2

2
|R〉. (16)
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Figure 2. The probability of being on the same side P (sep)
s in its dependence

on the coefficients of the initial coin states. The parameters h+
i are given by the

overlap of the coin state |ψi〉 with the eigenstate |χ+
〉 of the Hadamard coin. We

find that the probability P (sep)
s reaches the maximum value 3/4 when both h+

1,2
equals either zero or one. The minimum value 1/4 is obtained if one h+

i is zero
while the other one is unity.

We decompose the single-particle coin state in the Hadamard basis

|ψi〉 = h+
i |χ

+
〉 + h−

i |χ−
〉 .

From expression (16), we find the transformation between the coefficients in the standard and
the Hadamard basis

ai =

√
2 +

√
2

2
h+

i +

√
2 −

√
2

2
h−

i , bi =

√
2 −

√
2

2
h+

i −

√
2 +

√
2

2
h−

i .

With the help of these relations, we find that formula (14) for the probability P (sep)
s simplifies in

the Hadamard basis to

P (sep)
s =

1
4

(
2 + (2

∣∣h+
1

∣∣2 − 1)(2
∣∣h+

2

∣∣2 − 1)
)
. (17)

Here we have used the normalization of the single-particle coin state |ψi〉, i.e. the condition

|h+
i |

2 + |h−

i |
2
= 1. (18)

We display the probability of being on the same side P (sep)
s in its dependence on the

parameters h+
i in figure 2.

We find that P (sep)
s reaches the maximum value 3/4 provided that both h+

i equal zero or
unity, i.e. when both particles start the walk in the same eigenstate of the Hadamard coin. Indeed,
starting the single-particle walk in the eigenstate |χ+

〉 (|χ−
〉) leads to a probability distribution

that is maximally biased to the left (right). We illustrate this feature in figure 3. Note that this
effect has been identified numerically in [26]. Hence, when both particles start the walk in the
same eigenstate of the Hadamard coin, their probability distributions are maximally biased in
the same direction and, consequently, the particles are most likely to be on the same side. On the
other hand, if the particles start the walk in different eigenstates (e.g. the first one in |χ+

〉 and
the second one in |χ−

〉, which corresponds to h+
1 = 1 and h+

2 = 0), the probability distributions
are maximally biased in opposite directions. In such a case, the particles are most likely to be
on the opposite side of the lattice and P (sep)

s reaches the minimum 1/4.
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y

|ψC = |χ+

Figure 3. Single-particle probability distribution for the initial coin state |ψC〉 =

|χ+
〉. We find only one peak on the left side of the lattice; the peak on the

right side has disappeared. Consequently, the resulting probability distribution
is maximally biased to the left. Choosing the initial coin state as |ψC〉 = |χ−

〉

will flip the plot around the origin and the resulting probability distribution will
be maximally biased to the right.

4. Entangled initial states

Let us now analyze the probability that the particles will be on the same side of the lattice Ps

for the initial coin states |9C〉, which are not factorized. We follow two approaches. Firstly,
we analyze the particular case of maximally entangled Bell states. We express the two-particle
state in terms of single-particle amplitudes. In this way, we decompose the joint probability
distribution into single-particle distributions plus an interference term. We then use the results
of the previous section to find the asymptotic value of the probability Ps. By this approach,
we emphasize the role of the interference of probability amplitudes. Secondly, we employ
the equivalence between the two-particle walk on a line and single-particle walk on a square
lattice discussed in section 2. This correspondence allows us to use the tools developed for
the quantum walks with a single particle, namely the weak limit theorems [23], to find the
asymptotic probability density for the two-particle walk on a line. We leave the details of the
calculation for appendix A. With the explicit form of the probability density, we finally derive
the asymptotic value of the probability Ps for an arbitrary two-particle coin state.

We start by examining the particular case of maximally entangled Bell states,

|ψ±
〉 =

1
√

2
(|L R〉 ± |RL〉) , |φ±

〉 =
1

√
2
(|L L〉 ± |R R〉). (19)

Obviously, the joint probability distribution p(m, n, t) is no longer a product of the single-
particle probability distributions. However, we can still express it in terms of the single-particle
probability amplitudes. Let us denote by ψ (L)

i (m, t) the amplitude of the particle being after t
steps at the position m with the coin state |i〉, i = L , R, provided that the initial coin state was
|L〉. Similarly, let ψ (R)

i (m, t) be the amplitude for the initial coin state |R〉. With this notation,
we express the joint probability distributions generated by a quantum walk of two particles with
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initially entangled coins by

p(ψ
±)(m, n, t)=

1

2

∑
i, j=L ,R

∣∣∣ψ (L)
i (m, t)ψ (R)

j (n, t)±ψ (R)
i (m, t)ψ (L)

j (n, t)
∣∣∣2 ,

p(φ
±)(m, n, t) =

1

2

∑
i, j=L ,R

∣∣∣ψ (L)
i (m, t)ψ (L)

j (n, t)±ψ (R)
i (m, t)ψ (R)

j (n, t)
∣∣∣2 ,

where the superscript indicates the initial coin state. We now make use of the fact that the
amplitudes ψ (L ,R)

i (m, t) are real valued. Indeed, both the Hadamard coin and the initial states
have only real entries. Hence, the amplitudes cannot attain any imaginary part during the time
evolution. Therefore, we can replace the absolute values by simple brackets and expand the joint
probability distributions in the form

p(ψ
±)(m, n, t)=

1
2

(
p(L)(m, t)p(R)(n, t)+ p(R)(m, t)p(L)(n, t)

)
±ϕ(m, t)ϕ(n, t),

p(φ
±)(m, n, t)=

1
2

(
p(L)(m, t)p(L)(n, t)+ p(R)(m, t)p(R)(n, t)

)
±ϕ(m, t)ϕ(n, t).

(20)

Here, we have used the notation

ϕ(m, t)= ψ
(L)
L (m, t)ψ (R)

L (m, t)+ψ (L)
R (m, t)ψ (R)

R (m, t)

to shorten the formulae. Inserting expressions (20) into definition (9) of the probability Ps, we
find that the later one can be written in the form

P (ψ±)
s (t)= P (L R)

s (t)± I (t), P (φ±)
s (t)= P (L L)

s (t)± I (t).

The interference term I (t) is given by

I (t)= (ϕ−(t))2 + (ϕ+(t))2,

where we have denoted

ϕ−(t)=

0∑
m=−t

ϕ(m, t), ϕ+(t)=

t∑
m=1

ϕ(m, t).

Let us now turn to the asymptotic values of Ps in dependence on the choice of the Bell
state. The limits of P (L R)

s and P (L L)
s are given in (15). We obtain the asymptotic value of the

interference term I (t) from the numerical simulation, which indicates

I (t → +∞)=
1
8 .

Finally, for the limiting values of the probability Ps, we find

P (ψ+)
s =

1
2 , P (ψ−)

s =
1
4 , P (φ+)

s =
3
4 , P (φ−)

s =
1
2 . (21)

We display the dependence of Ps on the number of steps and the choice of the initial coin
state in figure 4. We find that the probability Ps quickly approaches the steady values, similar
to the factorized coin states that we have shown in figure 1. For |ψ+

〉 (open circles) and |φ−
〉

(black dots), the particles are asymptotically equally likely to be on the same or on the opposite
side. For the Bell state |φ+

〉 (stars), the particles are more likely to be on the same side of the
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Figure 4. The probability that two distinguishable particles performing a
quantum walk on a line with initially entangled coins end on the same side as
a function of time. Both particles start the quantum walk from the origin. As the
initial coin state |9C〉, we choose one of the Bell states (19). For the Bell states
|ψ+

〉 (open circles) and |φ−
〉 (black dots), the particles are equally likely to be

found on the same or on the opposite side of the line in the long time limit. For
finite times, they are more likely to be on the same side for |ψ+

〉 and more likely
on the opposite side for |φ−

〉. For the other two Bell states |ψ−
〉 (open diamonds)

and |φ+
〉 (stars), the differences remain in the asymptotic limit. The particles are

more likely to be on the opposite side for the singlet state |ψ−
〉 and more likely

to be on the same side for |φ+
〉. The asymptotic values of the probability Ps agree

with the findings of (21).

line. Finally, for the singlet state |ψ−
〉 (open diamonds), the particles are more likely to be

on the opposite side. The asymptotic values of the probabilities Ps are in agreement with the
results of (21).

After we have analyzed the particular case of the Bell states, we turn to a general initial
coin state. As in the previous section, we make use of the asymptotic probability density
p(x1, x2, t) and replace the sums in (9) by integrals. We derive the explicit form of the
asymptotic probability density in appendix A. Performing the integrations, we arrive at the
following expression,

Ps =
1
4

(
2 + |h(++)|

2 + |h(−−)|
2
− |h(+−)|

2
− |h(−+)|

2
)
,

for the probability of being on the same side. Here, we have denoted by h(αβ) the coefficients of
the decomposition of the initial coin state |9C〉 into the basis formed by the tensor product of
the eigenvectors |χ±

〉 of the Hadamard coin CH, i.e.

|9C〉 =

∑
α,β=±

h(αβ)|χ
α
〉|χβ〉. (22)

Finally, using the normalization condition for the initial coin state |9C〉

|h(++)|
2 + |h(−+)|

2 + |h(+−)|
2 + |h(−−)|

2
= 1,

we can simplify the expression for the probability P (ent)
s to the form

P (ent)
s =

1
4

(
1 + 2(|h(++)|

2 + |h(−−)|
2)
)
. (23)
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Figure 5. The probability of being on the same side of the lattice P (ent)
s in its

dependence on the choice of the initial coin state. We find that P (ent)
s is bounded in

the same way as P (sep)
s displayed in figure 2. The maximum is obtained for states

satisfying the condition |h(++)|
2 + |h(−−)|

2
= 1, while the minimum is reached

when h(++) = h(−−) = 0.

The dependence of the probability P (ent)
s on the initial coin state is illustrated in figure 5. We

find that the probability of being on the same side for entangled initial coin states P (ent)
s satisfies

exactly the same bounds as the probability P (sep)
s derived in the previous section for separable

initial coin states. The maximum value of 3/4 is reached when |h(++)|
2 + |h(−−)|

2
= 1. In such a

case, the initial coin state |9C〉 is an eigenstate of the two-particle coin CH ⊗ CH corresponding
to the eigenvalue +1. On the other hand, the minimum value 1/4 of the probability P (ent)

s is
attained when both h(++) and h(−−) vanish. This corresponds to |9C〉 being the eigenstate of the
coin CH ⊗ CH with the eigenvalue −1.

Finally, we note that for separable coin states, formula (23) reduces to equation (17), which
we have derived in the previous section. Indeed, for separable states we have the relation

h(++) = h+
1h+

2, h(−−) = h−

1 h−

2 ,

which together with normalization (18) implies

Ps =
1
4

(
1 + 2|h+

1|
2
|h+

2|
2 + 2|h−

1 |
2
|h−

2 |
2
)

=
1
4

(
1 + 2|h+

1|
2
|h+

2|
2 + 2(1 − |h+

1|
2)(1 − |h+

2|
2)
)

=
1
4

(
2 + (2

∣∣h+
1

∣∣2 − 1)(2
∣∣h+

2

∣∣2 − 1)
)

= P (sep)
s .

5. Indistinguishable particles

Let us now briefly discuss the probability of being on the same side Ps for indistinguishable
particles. We show that for a particular choice of the initial state of the two bosons or fermions,
the problem reduces to the case of distinguishable particles with maximally entangled coins.

As the initial state of the quantum walk we choose

|9(0)〉 = |1(0,L)1(0,R)〉,

i.e. both particles are initially at the origin with the opposite coin states. Recalling the amplitudes
ψ
(L)
i (ψ

(R)
i ) for the single particle performing the quantum walk with the initial coin state |L〉
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(|R〉), we express the state of two bosons and fermions in the following form,

|9(B)(t)〉 =
∑

m,n

∑
i, j=L ,R ψ

(L)
i (m, t)ψ (R)

j (n, t)â†
(m,i)â

†
(n, j)|vac〉,

|9(F)(t)〉 =
∑

m,n

∑
i, j=L ,R ψ

(L)
i (m, t)ψ (R)

j (n, t)b̂†
(m,i)b̂

†
(n, j)|vac〉,

(24)

where |vac〉 denotes the vacuum state. Note that in (24), both summation indexes m and n
run over all possible sites. Using commutation (7) and anti-commutation (8) relations, we can
restrict the sums in (24) over an ordered pair (m, n) with m > n. The resulting wavefunction
will be symmetric or antisymmetric.

We turn to the joint probabilities p(m, n, t) that, after t steps, we detect a particle at site m
and simultaneously a particle at site n, with m > n. Firstly, for m 6= n we find

p(B,F)(m, n, t)=
∣∣〈1(m,i)1(n, j)|9

(B,F)(t)〉
∣∣2

=

∑
i, j=L ,R

∣∣∣ψ (L)
i (m, t)ψ (R)

j (n, t)±ψ (R)
i (m, t)ψ (L)

j (n, t)
∣∣∣2 ,

where the + sign on the right-hand side corresponds to the bosonic (B), and the − sign to the
fermionic (F). Comparing these expressions with the results for Bell states (20), we identify the
relation

p(B)(m, n, t)= 2p(ψ
+)(m, n, t), p(F)(m, n, t)= 2p(ψ

−)(m, n, t). (25)

For m = n we obtain for bosons

p(B)(m,m, t)=
∣∣〈2(m,L)|9(B)(t)〉

∣∣2 +
∣∣〈2(m,R)|9(B)(t)〉

∣∣2 +
∣∣〈1(m,L)1(m,R)|9(B)(t)〉

∣∣2
= 2

∣∣∣ψ (L)
L (m, t)ψ (R)

L (m, t)
∣∣∣2 + 2

∣∣∣ψ (L)
R (m, t)ψ (R)

R (m, t)
∣∣∣2 +

∣∣∣ψ (L)
L (m, t)ψ (R)

R (m, t)

+ψ (L)
R (m, t)ψ (R)

L (m, t)
∣∣∣2,

and for fermions

p(F)(m,m, t)=
∣∣〈1(m,L)1(m,R)|9(F)(t)〉

∣∣2 =

∣∣∣ψ (L)
L (m, t)ψ (R)

R (m, t)−ψ (L)
R (m, t)ψ (R)

L (m, t)
∣∣∣2 .

We note that relations similar to (25) hold as well for m = n. Indeed, we find the following for
bosons,

p(B)(m,m, t)=
1

2

∑
i, j=L ,R

∣∣∣ψ (L)
i (m, t)ψ (R)

j (m, t)+ψ (R)
i (m, t)ψ (L)

j (m, t)
∣∣∣2

= p(ψ
+)(m,m, t), (26)

and for fermions,

p(F)(m,m, t)=
1

2

∑
i, j=L ,R

∣∣∣ψ (L)
i (m, t)ψ (R)

j (m, t)−ψ (R)
i (m, t)ψ (L)

j (m, t)
∣∣∣2

= p(ψ
−)(m,m, t). (27)

Finally, we derive the probability Ps that the bosons (or fermions) are on the same side of
the line. As we have already discussed, for indistinguishable particles, we have used formula
(10), where the summation is restricted to an ordered pair (m, n) with m > n. However, using
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the results of (25)–(27), we can replace p(B,F)(m, n, t) by p(ψ
±)(m, n, t) in (10) and extend the

summation over all pairs of m and n. Hence, we find that

P (B)
s (t)= P (ψ+)

s (t), P (F)
s (t)= P (ψ−)

s (t).

In summary, the results for bosons (respectively fermions) are the same as those for
distinguishable particles that have started the quantum walk with entangled coin state |ψ+

〉

(respectively |ψ−
〉). This is a direct consequence, of course, of the required symmetry properties

of two-particle boson and fermion states. We note that also the fact that the particles have started
the walk from the same lattice point is important. However, when the two indistinguishable
particles start the walk spatially separated, their evolution differs from that of distinguishable
particles with entangled coin states [59]. Indeed, indistinguishability starts to play a role when
the wavefunctions begin to overlap, whereas entanglement is a non-local property.

6. Quantum walks with δ-interactions

We have seen in the preceding sections that entanglement in two-particle non-interacting
quantum walks cannot break the limit of probabilities that we found for separable particles.
A natural question arises: What happens if we consider interacting particles? This motivates
us to introduce the concept of two-particle quantum walks with δ-interaction. To do that, we
change the factorized time evolution operator defined in (3). In the original time evolution, the
coin was the same factorized coin in all lattice point pairs (m, n); in the δ-interaction quantum
walk, we change the coin to a non-factorized one Cδ when the particles are at the same lattice
point m = n.

Considering the above, we define the unitary time evolution operator for quantum walks
with δ-interacting particles on a line as

Uδ = S12(P̄δ ⊗ (CH ⊗ CH))+ S12(Pδ ⊗ Cδ),

where Pδ is the projector on the joint position state,

Pδ =

∑
m

|m〉|m〉〈m|〈m|,

and

P̄δ = IP12 − Pδ.

As an example, we consider the entangling δ-interaction coin Cδ of the following form,

Cδ =
1

2


1 1 1 1
1 −1 −1 1

−1 1 −1 1
−1 −1 1 1

 . (28)

In figure 6, we present the results of a numerical simulation of the corresponding quantum walk
with δ-interaction. The initial coin state was chosen to be the Bell state |φ−

〉. From the upper
plot, we find that the joint probability distribution is concentrated on the diagonal; thus the
particles are likely to be found on the same side. The lower plot clearly indicates that quantum
walks on a line with δ-interactions can break the upper limit of Ps = 3/4 that we have derived
for non-interacting particles.
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Figure 6. Joint probability distribution (upper plot) and the probability of
being on the same side of the lattice Ps (lower plot) for two interacting
particles performing a quantum walk on a line. The δ-interaction coin Cδ is
realized by a matrix (28). As the initial coin state, we have chosen one of
the Bell states, namely |9C〉 = |φ−

〉. The resulting joint probability distribution
is mostly concentrated on the diagonal, as can be seen from the upper plot.
Consequently, the particles are very likely to be on the same side of the lattice.
Indeed, the lower plot indicates that the asymptotic value of the probability Ps

exceeds 0.8.

7. Conclusions

We have analyzed the two-particle quantum walk on a line focusing on the directional
correlations between the particles. The directional correlation of two non-interacting particles
on the line is shown to be confined in an interval, independent of whether the initial state is
entangled or not. The bounds of the interval are reached when the initial states coincide with the
eigenstates of the coin operator.

Introducing a δ-interaction, one can exceed the limit we derived for non-interacting
particles. The δ-interaction breaks the translational symmetry; thus new analytical tools are
needed for investigating the properties of the introduced model. In the picture of the joint time
evolution, this scheme could be considered as an inhomogeneous 2D quantum walk, where the
coin is changed on the diagonal line m = n.
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Appendix A. Asymptotic probability distribution for a quantum walk with
two entangled particles

In this appendix, we derive the asymptotic probability density for a quantum walk on a line with
two particles for an arbitrary initial coin state |9C〉. We make use of the close relation between
the two-particle walk on a line and a single-particle walk on a plane discussed in section 2. We
then employ the weak limit theorem [23].

The time evolution of the Hadamard walk on a plane is in the Fourier representation
determined by the propagator

Ũ12(k1, k2)= Ũ1(k1)⊗ Ũ2(k2).

Here, Ũ j(k) denotes the single-particle propagator of the Hadamard walk on a line, which is
given by

Ũ j(k)= D(e−ik, eik) · CH.

Since Ũ12(k1, k2) has the structure of a tensor product of two unitary matrices, we write its
eigenvalues in the form

λi j(k1, k2)= eiωi j (k1,k2) = ei(ωi (k1)+ω j (k2)), i, j = 1, 2, (A.1)

where eiωi (k) are the eigenvalues of the matrix Ũ j(k). Their phases ωi(k) are determined by

ω1(k)= arcsin

(
sin k
√

2

)
, ω2(k)= π −ω1(k). (A.2)

Similarly, we write the corresponding eigenvectors of Ũ12(k1, k2) in the form of a tensor product

vi j(k1, k2)= vi(k1)⊗ v j(k2)

of the eigenvectors of the matrices Ũ j(k j)

v1(k)=
1

√
n1(k)

(
eik,

√
2 eiω1(k) − eik

)T
,

v2(k)=
1

√
n2(k)

(
−eik,

√
2 e−iω1(k) + eik

)T
.

(A.3)

The normalization of the eigenvectors is given by

n1(k)= 2
(

1 + cos2 k − cos k
√

1 + cos2 k
)
,

n2(k)= 2
(

1 + cos2 k + cos k
√

1 + cos2 k
)
.

The weak limit theorem [23] states that the cumulative distribution function equals

F (x̃1, x̃2)=

2∑
i, j=1

∫
∇ω−1

i, j ((−∞,x̃1)×(−∞,x̃2))

dµi j , (A.4)
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where we have denoted x̃i =
xi
t . The probability measure µi j is determined by

µi j =
∣∣(vi j(k1, k2), ψC

)∣∣2 dk1

2π

dk2

2π
.

The four-component vectorψC corresponds to the initial state of the coin |9C〉. From the explicit
form of the eigenvectors vi j(k1, k2) given in (A.3), we find that the probability measures µi j

equal

µi j =
1

4

[
1 + (−1)i+1 (C1C(k1)+ S1S(k1))+ (−1) j+1 (C2C(k2)+ S2S(k2))

+ (−1)i+ j (C12C(k1)C(k2)+ S12S(k1)S(k2)+ X1C(k1)S(k2)

+ X2S(k1)C(k2))]
dk1

2π

dk2

2π
. (A.5)

Here, we have used the notation

C(k)=
cos k

√
1 + cos2 k

, S(k)=
sin k

√
1 + cos2 k

to shorten the formulae. The coefficients C, S and X entering expressions (A.5) can be
determined from the initial state of the coin |9C〉.

To obtain the cumulative distribution function (A.4), we also have to find the integration
domains. These are determined by the gradients of the phases ωi, j(k1, k2) of the eigenvalues of
the propagator Ũ12(k1, k2). From their explicit form given in (A.1) and (A.2), we find that the
gradients are

∇ωi j(k1, k2)=
(
(−1)i+1C(k1), (−1) j+1C(k2)

)
.

Using the above derived results and the substitution

C(ki)=
cos ki√

1 + cos2 ki

= qi , dki =
dqi

(1 − q2
i )

√
1 − 2q2

i

,

we can simplify the cumulative distribution function into the form

F(x̃1, x̃2)=
1

π2

∫ x̃1

−
1

√
2

dq1

(1 − q2
1)
√

1 − 2q2
1

∫ x̃2

−
1

√
2

dq2

(1 − q2
2)
√

1 − 2q2
2

[1 − C1q1 − C2q2 + C12q1q2] .

With the help of the relation

p(x, y)=
∂2 F

∂x∂y

between the cumulative distribution F(x, y) and the probability density p(x, y), we find that
the later one is given by

p(x1, x2, t)=
1

π 2(1 − (x2
1/t

2)
√

1 − 2(x2
1/t

2)(1 − (x2
2/t

2))
√

1 − 2(x2
2/t

2)

×

[
1 − C1

x1

t
− C2

x2

t
+ C12

x1x2

t2

]
.

Finally, we give the explicit form of the coefficients C1,C2 and C12. We find that they have
a particularly simple form in the basis formed by the tensor product of eigenvectors of the
Hadamard coin |χ±

〉, which have been given in (16). With the decomposition of the initial
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coin state in the Hadamard basis as given in (22), we obtain the following expressions for the
coefficients C1,2 and C12,

C1 =
√

2
(
|h(++)|

2 + |h(+−)|
2
− |h(−+)|

2
− |h(−−)|

2
)
,

C2 =
√

2
(
|h(++)|

2 + |h(−+)|
2
− |h(+−)|

2
− |h(−−)|

2
)
,

C12 = 2
(
|h(++)|

2 + |h(−−)|
2
− |h(+−)|

2
− |h(−+)|

2
)
.
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