20,385 research outputs found
Silicon film solar cell process
The most promising way to reduce the cost of silicon in solar cells while still maintaining performance is to utilize thin films (10 to 20 microns thick) of crystalline silicon. The method of solution growth is being employed to grow thin polycrystalline films of silicon on dissimilar substrates. The initial results indicate that, using tin as the solvent, this growth process only requires operating temperatures in the range of 800 C to 1000 C. Growth rates in the range of 0.4 to 2.0 microns per minute and grain sizes in the range of 20 to 100 microns were achieved on both quartz and coated steel substrates. Typically, an aspect ratio of two to three between the width and the Si grain thickness is seen. Uniform coverage of Si growth on quartz over a 2.5 x 2.5 cm area was observed
GaAsP on GaP top solar cells
GaAsP on GaP top solar cells as an attachment to silicon bottom solar cells are being developed. The GaAsP on GaP system offers several advantages for this top solar cell. The most important is that the gallium phosphide substrate provides a rugged, transparent mechanical substrate which does not have to be removed or thinned during processing. Additional advantages are that: (1) gallium phosphide is more oxidation resistant than the III-V aluminum compounds, (2) a range of energy band gaps higher than 1.75 eV is readily available for system efficiency optimization, (3) reliable ohmic contact technology is available from the light-emitting diode industry, and (4) the system readily lends itself to graded band gap structures for additional increases in efficiency
Arkansas Cotton Variety Test 2016
The primary goal of the Arkansas Cotton Variety Test is to provide unbiased data regarding the agronomic performance of cotton varieties and advanced breeding lines in the major cotton-growing areas of Arkansas
Minimum-error discrimination between three mirror-symmetric states
We present the optimal measurement strategy for distinguishing between three
quantum states exhibiting a mirror symmetry. The three states live in a
two-dimensional Hilbert space, and are thus overcomplete. By mirror symmetry we
understand that the transformation {|+> -> |+>, |-> -> -|->} leaves the set of
states invariant. The obtained measurement strategy minimizes the error
probability. An experimental realization for polarized photons, realizable with
current technology, is suggested.Comment: 4 pages, 2 figure
Experimental Demonstration of Optimal Unambiguous State Discrimination
We present the first full demonstration of unambiguous state discrimination
between non-orthogonal quantum states. Using a novel free space interferometer
we have realised the optimum quantum measurement scheme for two non-orthogonal
states of light, known as the Ivanovic-Dieks-Peres (IDP) measurement. We have
for the first time gained access to all three possible outcomes of this
measurement. All aspects of this generalised measurement scheme, including its
superiority over a standard von Neumann measurement, have been demonstrated
within 1.5% of the IDP predictions
Optimum detection for extracting maximum information from symmetric qubit sets
We demonstrate a class of optimum detection strategies for extracting the
maximum information from sets of equiprobable real symmetric qubit states of a
single photon. These optimum strategies have been predicted by Sasaki et al.
[Phys. Rev. A{\bf 59}, 3325 (1999)]. The peculiar aspect is that the detections
with at least three outputs suffice for optimum extraction of information
regardless of the number of signal elements. The cases of ternary (or trine),
quinary, and septenary polarization signals are studied where a standard von
Neumann detection (a projection onto a binary orthogonal basis) fails to access
the maximum information. Our experiments demonstrate that it is possible with
present technologies to attain about 96% of the theoretical limit.Comment: 10 pages, 11 figures, to be submitted to Phys. Rev. A Converted to
REVTeX4 format, and a few other minor modifications according to the comments
from PRA referre
AlGaAs top solar cell for mechanical attachment in a multi-junction tandem concentrator solar cell stack
The AstroPower self-supporting, transparent AlGaAs top solar cell can be stacked upon any well-developed bottom solar cell for improved system performance. This is an approach to improve the performance and scale of space photovoltaic power systems. Mechanically stacked tandem solar cell concentrator systems based on the AlGaAs top concentrator solar cell can provide near term efficiencies of 36 percent (AMO, 100x). Possible tandem stack efficiencies greater than 38 percent (100x, AMO) are feasible with a careful selection of materials. In a three solar cell stack, system efficiencies exceed 41 percent (100x, AMO). These device results demonstrate a practical solution for a state-of-the-art top solar cell for attachment to an existing, well-developed solar cell
Critique on the Use of the Standardized Avian Acute Oral Toxicity Test for First Generation Anticoagulant Rodenticides
Avian risk assessments for rodenticides are often driven by the results of standardized acute oral toxicity tests without regards to a toxicant’s mode of action and time course of adverse effects. First generation anticoagulant rodenticides (FGARs) generally require multiple feedings over several days to achieve a threshold concentration in tissue and cause adverse effects. This exposure regimen is much different than that used in the standardized acute oral toxicity test methodology. Median lethal dose values derived from standardized acute oral toxicity tests underestimate the environmental hazard and risk of FGARs. Caution is warranted when FGAR toxicity, physiological effects, and pharmacokinetics derived from standardized acute oral toxicity testing are used for forensic confirmation of the cause of death in avian mortality incidents and when characterizing FGARs’ risks to free-ranging birds
Critique on the Use of the Standardized Avian Acute Oral Toxicity Test for First Generation Anticoagulant Rodenticides
Avian risk assessments for rodenticides are often driven by the results of standardized acute oral toxicity tests without regards to a toxicant’s mode of action and time course of adverse effects. First generation anticoagulant rodenticides (FGARs) generally require multiple feedings over several days to achieve a threshold concentration in tissue and cause adverse effects. This exposure regimen is much different than that used in the standardized acute oral toxicity test methodology. Median lethal dose values derived from standardized acute oral toxicity tests underestimate the environmental hazard and risk of FGARs. Caution is warranted when FGAR toxicity, physiological effects, and pharmacokinetics derived from standardized acute oral toxicity testing are used for forensic confirmation of the cause of death in avian mortality incidents and when characterizing FGARs’ risks to free-ranging birds
Accessible information and optimal strategies for real symmetrical quantum sources
We study the problem of optimizing the Shannon mutual information for sources
of real quantum states i.e. sources for which there is a basis in which all the
states have only real components. We consider in detail the sources of equiprobable qubit states lying symmetrically around the great
circle of real states on the Bloch sphere and give a variety of explicit
optimal strategies. We also consider general real group-covariant sources for
which the group acts irreducibly on the subset of all real states and prove the
existence of a real group-covariant optimal strategy, extending a theorem of
Davies (E. B. Davies, IEEE. Inf. Theory {\bf IT-24}, 596 (1978)). Finally we
propose an optical scheme to implement our optimal strategies, enough simple to
be realized with present technology.Comment: RevTeX, 16 pages, 4 eps figures with psfig, submitted to Phys. Rev.
A, corrected output error of Fig. 1 in the previous versio
- …