625 research outputs found
Prompt atmospheric neutrinos and muons: dependence on the gluon distribution function
We compute the next-to-leading order QCD predictions for the vertical flux of
atmospheric muons and neutrinos from decays of charmed particles, for different
PDF's (MRS-R1, MRS-R2, CTEQ-4M and MRST) and different extrapolations of these
at small partonic momentum fraction x. We find that the predicted fluxes vary
up to almost two orders of magnitude at the largest energies studied, depending
on the chosen extrapolation of the PDF's. We show that the spectral index of
the atmospheric leptonic fluxes depends linearly on the slope of the gluon
distribution function at very small x. This suggests the possibility of
obtaining some bounds on this slope in ``neutrino telescopes'', at values of x
not reachable at colliders, provided the spectral index of atmospheric leptonic
fluxes could be determined.Comment: 20 pages including 8 figure
Scheme and Scale Dependence of Charm Production in Neutrino Scattering
We discuss some theoretical uncertainties in the calculation of the cross
section for charm production in charged current deep inelastic neutrino
scattering related to ambiguities in the treatment of terms which are singular
in the limit of a vanishing charm mass. In particular we compare the so-called
variable flavour scheme where these terms are absorbed in the parton
distribution functions containing the charm as an active flavour, with the
so-called fixed flavour scheme with no charm mass subtraction where the charm
appears only in the final state of fixed-order scattering matrix elements.
Using available parametrizations of parton distribution functions we find that
the two schemes lead to largely differing results for separate structure
functions whereas the differences cancel to a large extent in the total cross
section in that kinematical region which has been measured so far.Comment: 20pages, uuencoded postscript, figures include
Constraints on the Charged Higgs Sector from the Tevatron Collider Data on Top Quark Decay
The top quark data in the lepton plus channel offers a viable probe
for the charged Higgs boson signal. We analyse the recent Tevatron collider
data in this channel to obtain a significant limit on the mass in the
large region.Comment: 8 pages, LaTeX file; 2 figures included (PS files
Extending political participation in China: new opportunities for citizens in the policy process
Authoritarian political systems are portrayed as offering few opportunities for citizens to participate in politics ā particularly in the policy process. This paperās contribution is to set out new mechanisms that enable Authoritarian political systems are portrayed as offering few opportunities for citizens to participate in politics ā particularly in the policy process. This paperās contribution is to set out new mechanisms that enable Chinese citizens to evaluate government performance, contribute to decision-making, shape policy agendas and feed back on implementation. Based on fieldwork in the city of Hangzhou, we argue that the local party-state orchestrates citizen participation in the policy process, but members of the public nevertheless do have influence. Political participation is widening in China, but it is still controlled. It is not yet clearly part of a process of democratization, but it does establish the principle of citizen rights to oversee the government
An open extensible tool environment for Event-B
Abstract. We consider modelling indispensable for the development of complex systems. Modelling must be carried out in a formal notation to reason and make meaningful conjectures about a model. But formal modelling of complex systems is a difficult task. Even when theorem provers improve further and get more powerful, modelling will remain difficult. The reason for this that modelling is an exploratory activity that requires ingenuity in order to arrive at a meaningful model. We are aware that automated theorem provers can discharge most of the onerous trivial proof obligations that appear when modelling systems. In this article we present a modelling tool that seamlessly integrates modelling and proving similar to what is offered today in modern integrated development environments for programming. The tool is extensible and configurable so that it can be adapted more easily to different application domains and development methods.
Tisa: A Language Design and Modular Verification Technique for Temporal Policies in Web Services
Web services are distributed software components, that are decoupled from each other using interfaces with specified functional behaviors. However, such behavioral specifications are insufficient to demonstrate compliance with certain temporal non-functional policies. An example is demonstrating that a patientās health-related query sent to a health care service is answered only by a doctor (and not by a secretary). Demonstrating compliance with such policies is important for satisfying governmental privacy regulations. It is often necessary to expose the internals of the web service implementation for demonstrating such compliance, which may compromise modularity. In this work, we provide a language design that enables such demonstrations, while hiding majority of the serviceās source code. The key idea is to use greybox specifications to allow service providers to selectively hide and expose parts of their implementation. The overall problem of showing compliance is then reduced to two subproblems: whether the desired properties are satisfied by the serviceās greybox specification, and whether this greybox specification is satisfied by the serviceās implementation. We specify policies using LTL and solve the first problem by model checking. We solve the second problem by refinement techniques
Relative sea-level change in Newfoundland, Canada during the past ā¼3000 years
Several processes contributing to coastal relative sea-level (RSL) change in the North Atlantic Ocean are observed and/or predicted to have distinctive spatial expressions that vary by latitude. To expand the latitudinal range of RSL records spanning the past ā¼3000 years and the likelihood of recognizing the characteristic fingerprints of these processes, we reconstructed RSL at two sites (Big River and Placentia) in Newfoundland from salt-marsh sediment. Bayesian transfer functions established the height of former sea level from preserved assemblages of foraminifera and testate amoebae. Age-depth models constrained by radiocarbon dates and chronohorizons estimated the timing of sediment deposition. During the past ā¼3000 years, RSL rose by ā¼3.0āÆmāÆat Big River and by ā¼1.5āÆmāÆat Placentia. A locally calibrated geotechnical model showed that post-depositional lowering through sediment compaction was minimal. To isolate and quantify contributions to RSL from global, regional linear, regional non-linear, and local-scale processes, we decomposed the new reconstructions (and those in an expanded, global database) using a spatio-temporal statistical model. The global component confirms that 20th century sea-level rise occurred at the fastest, century-scale rate in over 3000 years (PāÆ>āÆ0.999). Distinguishing the contributions from local and regional non-linear processes is made challenging by a sparse network of reconstructions. However, only a small contribution from local-scale processes is necessary to reconcile RSL reconstructions and modeled RSL trends. We identified three latitudinally-organized groups of sites that share coherent regional non-linear trends and indicate that dynamic redistribution of ocean mass by currents and/or winds was likely an important driver of sea-level change in the North Atlantic Ocean during the past ā¼3000 years
T violation and the unidirectionality of time
An increasing number of experiments at the Belle, BNL, CERN, DA{\Phi}NE and
SLAC accelerators are confirming the violation of time reversal invariance (T).
The violation signifies a fundamental asymmetry between the past and future and
calls for a major shift in the way we think about time. Here we show that
processes which violate T symmetry induce destructive interference between
different paths that the universe can take through time. The interference
eliminates all paths except for two that represent continuously forwards and
continuously backwards time evolution. Evidence from the accelerator
experiments indicates which path the universe is effectively following. This
work may provide fresh insight into the long-standing problem of modeling the
dynamics of T violation processes. It suggests that T violation has previously
unknown, large-scale physical effects and that these effects underlie the
origin of the unidirectionality of time. It may have implications for the
Wheeler-DeWitt equation of canonical quantum gravity. Finally it provides a
view of the quantum nature of time itself.Comment: 24 pages, 5 figures. Final version accepted for publishing in
Foundations of Physics. The final publication is available at
http://www.springerlink.com/content/y3h4174jw2w78322
Mesoscopic scattering in the half-plane: squeezing conductance through a small hole
We model the 2-probe conductance of a quantum point contact (QPC), in linear
response. If the QPC is highly non-adiabatic or near to scatterers in the open
reservoir regions, then the usual distinction between leads and reservoirs
breaks down and a technique based on scattering theory in the full
two-dimensional half-plane is more appropriate. Therefore we relate conductance
to the transmission cross section for incident plane waves. This is equivalent
to the usual Landauer formula using a radial partial-wave basis. We derive the
result that an arbitrarily small (tunneling) QPC can reach a p-wave channel
conductance of 2e^2/h when coupled to a suitable reflector. If two or more
resonances coincide the total conductance can even exceed this. This relates to
recent mesoscopic experiments in open geometries. We also discuss reciprocity
of conductance, and the possibility of its breakdown in a proposed QPC for atom
waves.Comment: 8 pages, 3 figures, REVTeX. Revised version (shortened), accepted for
publication in PR
A Compact Beam Stop for a Rare Kaon Decay Experiment
We describe the development and testing of a novel beam stop for use in a
rare kaon decay experiment at the Brookhaven AGS. The beam stop is located
inside a dipole spectrometer magnet in close proximity to straw drift chambers
and intercepts a high-intensity neutral hadron beam. The design process,
involving both Monte Carlo simulations and beam tests of alternative beam-stop
shielding arrangements, had the goal of minimizing the leakage of particles
from the beam stop and the resulting hit rates in detectors, while preserving
maximum acceptance for events of interest. The beam tests consisted of
measurements of rates in drift chambers, scintilation counter hodoscopes, a gas
threshold Cherenkov counter, and a lead glass array. Measurements were also
made with a set of specialized detectors which were sensitive to low-energy
neutrons, photons, and charged particles. Comparisons are made between these
measurements and a detailed Monte Carlo simulation.Comment: 39 pages, 14 figures, submitted to Nuclear Instruments and Method
- ā¦