19,918 research outputs found
Classifying vortices in S= 3 Bose-Einstein condensates
Motivated by the recent realization of a Cr Bose-Einstein condensate,
we consider the phase diagram of a general spin-three condensate as a function
of its scattering lengths. We classify each phase according to its ``reciprocal
spinor,'' using a method developed in a previous work. We show that such a
classification can be naturally extended to describe the vortices for a spinor
condensate by using the topological theory of defects. To illustrate, we
systematically describe the types of vortex excitations for each phase of the
spin-three condensate
Combustion Limits and Efficiency of Turbojet Engines
Combustion must be maintained in the turbojet-engine combustor over a wide range of operating conditions resulting from variations in required engine thrust, flight altitude, and flight speed. Furthermore, combustion must be efficient in order to provide the maximum aircraft range. Thus, two major performance criteria of the turbojet-engine combustor are (1) operatable range, or combustion limits, and (2) combustion efficiency. Several fundamental requirements for efficient, high-speed combustion are evident from the discussions presented in chapters III to V. The fuel-air ratio and pressure in the burning zone must lie within specific limits of flammability (fig. 111-16(b)) in order to have the mixture ignite and burn satisfactorily. Increases in mixture temperature will favor the flammability characteristics (ch. III). A second requirement in maintaining a stable flame -is that low local flow velocities exist in the combustion zone (ch. VI). Finally, even with these requirements satisfied, a flame needs a certain minimum space in which to release a desired amount of heat, the necessary space increasing with a decrease in pressure (ref. 1). It is apparent, then, that combustor design and operation must provide for (1) proper control of vapor fuel-air ratios in the combustion zone at or near stoichiometric, (2) mixture pressures above the minimum flammability pressures, (3) low flow velocities in the combustion zone, and (4) adequate space for the flame
Flexible Invariants Through Semantic Collaboration
Modular reasoning about class invariants is challenging in the presence of
dependencies among collaborating objects that need to maintain global
consistency. This paper presents semantic collaboration: a novel methodology to
specify and reason about class invariants of sequential object-oriented
programs, which models dependencies between collaborating objects by semantic
means. Combined with a simple ownership mechanism and useful default schemes,
semantic collaboration achieves the flexibility necessary to reason about
complicated inter-object dependencies but requires limited annotation burden
when applied to standard specification patterns. The methodology is implemented
in AutoProof, our program verifier for the Eiffel programming language (but it
is applicable to any language supporting some form of representation
invariants). An evaluation on several challenge problems proposed in the
literature demonstrates that it can handle a variety of idiomatic collaboration
patterns, and is more widely applicable than the existing invariant
methodologies.Comment: 22 page
The influence of free-stream turbulence on separation of turbulent boundary layers in incompressible, two-dimensional flow
Experiments were conducted to determine if free-stream turbulence scale affects separation of turbulent boundary layers. In consideration of possible interrelation between scale and intensity of turbulence, the latter characteristic also was varied and its role was evaluated. Flow over a 2-dimensional airfoil in a subsonic wind tunnel was studied with the aid of hot-wire anemometry, liquid-film flow visualization, a Preston tube, and static pressure measurements. Profiles of velocity, relative turbulence intensity, and integral scale in the boundary layer were measured. Detachment boundary was determined for various angles of attack and free-stream turbulence. The free-stream turbulence intensity and scale were found to spread into the entire turbulent boundary layer, but the effect decreased as the airfoil surface was approached. When the changes in stream turbulence were such that the boundary layer velocity profiles were unchanged, detachment location was not significantly affected by the variations of intensity and scale. Pressure distribution remained the key factor in determining detachment location
The role of freestream turbulence scale in subsonic flow separation
The clarification of the role of freestream turbulence scale in determining the location of boundary layer separation is discussed. Modifications to the test facility were completed. Wind tunnel flow characteristics, including turbulence parameters, were determined with two turbulence generating grids, as well as no grid. These results are summarized. Initial results on the role of scale on turbulent boundary layer separation on the upper surface of an airfoil model are also discussed
First Principles Study of the Electronic and Vibrational Properties of LiNbO2
In the layered transition metal oxide LiNbO the Nb () ion is
trigonal-prismatically coordinated with O ions, with the resulting crystal
field leading to a single band system for low energy properties. A
tight-binding representation shows that intraplanar second neighbor hopping
meV dominates the first neighbor interaction ( meV). The
first and third neighbor couplings are strongly modified by oxygen
displacements of the symmetric Raman-active vibrational mode, and
electron-phonon coupling to this motion may provide the coupling mechanism for
superconductivity in Li-deficient samples (where K). We calculate all
zone-center phonon modes, identify infrared (IR) and Raman active modes, and
report LO-TO splitting of the IR modes. The Born effective charges for the
metal ions are found to have considerable anisotropy reflecting the degree to
which the ions participate in interlayer coupling and covalent bonding. Insight
into the microscopic origin of the valence band density, composed of Nb
states with some mixing of O states, is obtained from examining
Wannier functions for these bands.Comment: 12 pages, 7 figures; Updated with reviewer comments; Updated
reference
Cyclotron motion and magnetic focusing in semiconductor quantum wells with spin-orbit coupling
We investigate the ballistic motion of electrons in III-V semiconductor
quantum wells with Rashba spin-orbit coupling in a perpendicular magnetic
field. Taking into account the full quantum dynamics of the problem, we explore
the modifications of classical cyclotron orbits due to spin-orbit interaction.
As a result, for electron energies comparable with the cyclotron energy the
dynamics are particularly rich and not adequately described by semiclassical
approximations. Our study is complementary to previous semiclassical approaches
concentrating on the regime of weaker fields.Comment: 14 pages, 8 figures included, version to appear in Phys. Rev.
Exploring Outliers in Crowdsourced Ranking for QoE
Outlier detection is a crucial part of robust evaluation for crowdsourceable
assessment of Quality of Experience (QoE) and has attracted much attention in
recent years. In this paper, we propose some simple and fast algorithms for
outlier detection and robust QoE evaluation based on the nonconvex optimization
principle. Several iterative procedures are designed with or without knowing
the number of outliers in samples. Theoretical analysis is given to show that
such procedures can reach statistically good estimates under mild conditions.
Finally, experimental results with simulated and real-world crowdsourcing
datasets show that the proposed algorithms could produce similar performance to
Huber-LASSO approach in robust ranking, yet with nearly 8 or 90 times speed-up,
without or with a prior knowledge on the sparsity size of outliers,
respectively. Therefore the proposed methodology provides us a set of helpful
tools for robust QoE evaluation with crowdsourcing data.Comment: accepted by ACM Multimedia 2017 (Oral presentation). arXiv admin
note: text overlap with arXiv:1407.763
Meson PVV Interactions are determined by Quark Loops
We show that all abnormal parity three-body meson interactions can be
adequately described by quark loops, evaluated at zero external momentum, with
couplings determined by symmetry. We focus primarily on radiative
meson decays which involve one pseudoscalar. The agreement with experiment for
non-rare decays is surprisingly good and requires very few parameters, namely
the coupling constants and and some mixing angles.
This agreement extends to some three-body decays that are dominated by pion
pairs in a P-wave state.Comment: 21 pages, Revtex, one figur
- …