16,635 research outputs found
The 30-kW ammonia arcjet technology
The technical results are summarized of a 30 kW class ammonia propellant arcjet technology program. Evaluation of previous arcjet thruster performance, including materials analysis of used thruster components, led to the design of an arcjet with improved performance and thermal characteristics. Tests of the new engine demonstrated that engine performance is relatively insensitive to cathode tip geometry. Other data suggested a maximum sustainable arc length for a given thruster configuration, beyond which the arc may reconfigure in a destructive manner. A flow controller calibration error was identified. This error caused previously reported values of specific impulse and thrust efficiency to be 20 percent higher than the real values. Corrected arcjet performance data are given. Duration tests of 413 and 252 hours, and several tests 100 hours in duration, were performed. The cathode tip erosion rate increased with increasing arc current. Elimination of power source ripple did not affect cathode tip whisker growth. Results of arcjet modeling, diagnostic development and mission analyses are also discussed. The 30 kW ammonia arcjet may now be considered ready for development for a flight demonstration, but widespread application of 30 kW class arcjet will require improved efficiency and lifetime
Retrodiction as a tool for micromaser field measurements
We use retrodictive quantum theory to describe cavity field measurements by
successive atomic detections in the micromaser. We calculate the state of the
micromaser cavity field prior to detection of sequences of atoms in either the
excited or ground state, for atoms that are initially prepared in the excited
state. This provides the POM elements, which describe such sequences of
measurements.Comment: 20 pages, 4(8) figure
Experimental Demonstration of Optimal Unambiguous State Discrimination
We present the first full demonstration of unambiguous state discrimination
between non-orthogonal quantum states. Using a novel free space interferometer
we have realised the optimum quantum measurement scheme for two non-orthogonal
states of light, known as the Ivanovic-Dieks-Peres (IDP) measurement. We have
for the first time gained access to all three possible outcomes of this
measurement. All aspects of this generalised measurement scheme, including its
superiority over a standard von Neumann measurement, have been demonstrated
within 1.5% of the IDP predictions
Large-uncertainty intelligent states for angular momentum and angle
The equality in the uncertainty principle for linear momentum and position is
obtained for states which also minimize the uncertainty product. However, in
the uncertainty relation for angular momentum and angular position both sides
of the inequality are state dependent and therefore the intelligent states,
which satisfy the equality, do not necessarily give a minimum for the
uncertainty product. In this paper, we highlight the difference between
intelligent states and minimum uncertainty states by investigating a class of
intelligent states which obey the equality in the angular uncertainty relation
while having an arbitrarily large uncertainty product. To develop an
understanding for the uncertainties of angle and angular momentum for the
large-uncertainty intelligent states we compare exact solutions with analytical
approximations in two limiting cases.Comment: 20 pages, 9 figures, submitted to J. Opt. B special issue in
connection with ICSSUR 2005 conferenc
Dydrogesterone and norethisterone regulate expression of lipoprotein lipase and hormones-sensitive lipase in human subcutaneous abdominal adipocytes
Aim: In premenopausal women, hyper-androgenicity is associated with central obesity and an increased cardiovascular risk. We investigated the effects of dydrogesterone (DYD)(a non-androgenic progestogen) and norethisterone (NET)(an androgenic progestogen) on lipoprotein lipase (LPL), hormone-sensitive lipase (HSL) and glycerol release in adipocytes isolated from subcutaneous abdominal adipose tissue. Methods: Adipose tissue was obtained from 12 non-diabetic women, mean age 51 years (range 37-78) and mean BMI 25.4kg/m2 (range 20.3-26.4). Adipocytes were treated with increasing doses of DYD and NET for 48 hours prior to protein extraction. Effects on lipogenesis and lipolysis were assessed using western blotting to determine the expression of key enzymes, LPL (56kDa) and HSL (84kDa) respectively. Measurement of glycerol release into the medium provided an assessment of lipolytic activity. Results: Expression of LPL was increased by DYD and NET (mean protein expression relative to control ± SEM); with greatest effect at 10-8M for DYD: 2.32±0.51(p0.05). Conclusions: DYD and NET significantly increased LPL expression relative to control whilst significantly reducing HSL expression. At the concentrations studied, similar effects were observed with the androgenic NET and the non-androgenic DYD despite differing effects on the lipid profile when taken
in combination with estrogen. Further work in this area may improve knowledge about the effects of different progestogens on body fat distribution and enable progestogen use to be tailored to the individual to achieve maximal benefits
Joint measurements and Bell inequalities
Joint quantum measurements of non-commuting observables are possible, if one
accepts an increase in the measured variances. A necessary condition for a
joint measurement to be possible is that a joint probability distribution
exists for the measurement. This fact suggests that there may be a link with
Bell inequalities, as these will be satisfied if and only if a joint
probability distribution for all involved observables exists. We investigate
the connections between Bell inequalities and conditions for joint quantum
measurements to be possible. Mermin's inequality for the three-particle
Greenberger-Horne-Zeilinger state turns out to be equivalent to the condition
for a joint measurement on two out of the three quantum systems to exist.
Gisin's Bell inequality for three co-planar measurement directions, meanwhile,
is shown to be less strict than the condition for the corresponding joint
measurement
Atmospheric transmission computer program CP
A computer program is described which allows for calculation of the effects of carbon dioxide, water vapor, methane, ozone, carbon monoxide, and nitrous oxide on earth resources remote sensing techniques. A flow chart of the program and operating instructions are provided. Comparisons are made between the atmospheric transmission obtained from laboratory and spacecraft spectrometer data and that obtained from a computer prediction using a model atmosphere and radiosonde data. Limitations of the model atmosphere are discussed. The computer program listings, input card formats, and sample runs for both radiosonde data and laboratory data are included
Single-shot measurement of quantum optical phase
Although the canonical phase of light, which is defined as the complement of
photon number, has been described theoretically by a variety of distinct
approaches, there have been no methods proposed for its measurement. Indeed
doubts have been expressed about whether or not it is measurable. Here we show
how it is possible, at least in principle, to perform a single-shot measurement
of canonical phase using beam splitters, mirrors, phase shifters and
photodetectors.Comment: This paper was published in PRL in 2002 but, at the time, was not
placed on the archive. It is included now to make accessing this paper easie
- …